-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelVQContext.py
503 lines (389 loc) · 17.1 KB
/
modelVQContext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import math
import torch
from torch import nn
import torch.nn.functional as F
from torch.autograd import Variable
from time import time
from dataset import Tree
from random import randint
from random import shuffle
from ObjEditer import ShapeGeometry
#########################################################################################
# Encoder
#########################################################################################
class BoxEncoder(nn.Module):
def __init__(self, boxSize, featureSize, hiddenSize):
super(BoxEncoder, self).__init__()
self.encoder = nn.Linear(boxSize, featureSize)
self.middlein = nn.Linear(featureSize, hiddenSize)
self.middleout = nn.Linear(hiddenSize, featureSize)
self.tanh = nn.Tanh()
def forward(self, boxes_in):
boxes = self.encoder(boxes_in)
boxes = self.tanh(boxes)
boxes = self.middlein(boxes)
boxes = self.tanh(boxes)
boxes = self.middleout(boxes)
boxes = self.tanh(boxes)
return boxes
class AdjEncoder(nn.Module):
def __init__(self, featureSize, hiddenSize):
super(AdjEncoder, self).__init__()
self.left = nn.Linear(featureSize, hiddenSize)
self.right = nn.Linear(featureSize, hiddenSize, bias=False)
self.second = nn.Linear(hiddenSize, hiddenSize)
self.third = nn.Linear(hiddenSize, featureSize)
self.tanh = nn.Tanh()
def forward(self, left_in, right_in):
out = self.left(left_in)
out += self.right(right_in)
out = self.tanh(out)
out = self.second(out)
out = self.tanh(out)
out = self.third(out)
out = self.tanh(out)
return out
class SymEncoder(nn.Module):
def __init__(self, featureSize, symmetrySize, hiddenSize):
super(SymEncoder, self).__init__()
self.left = nn.Linear(featureSize, hiddenSize)
self.right = nn.Linear(symmetrySize, hiddenSize)
self.second = nn.Linear(hiddenSize, hiddenSize)
self.third = nn.Linear(hiddenSize, featureSize)
self.tanh = nn.Tanh()
def forward(self, left_in, right_in):
out = self.left(left_in)
out += self.right(right_in)
out = self.tanh(out)
out = self.second(out)
out = self.tanh(out)
out = self.third(out)
out = self.tanh(out)
return out
class GRASSEncoder(nn.Module):
def __init__(self, config):
super(GRASSEncoder, self).__init__()
self.boxEncoder = BoxEncoder(
boxSize=config.boxSize, featureSize=config.featureSize, hiddenSize=config.hiddenSize)
self.adjEncoder = AdjEncoder(
featureSize=config.featureSize, hiddenSize=config.hiddenSize)
self.symEncoder = SymEncoder(
featureSize=config.featureSize, symmetrySize=config.symmetrySize, hiddenSize=config.hiddenSize)
self.dict = nn.Embedding(
num_embeddings=config.vqDictionary, embedding_dim=config.vqFeature)
self.num_embeddings = config.vqDictionary
self.embedding_dim = config.vqFeature
self.featureLength = config.featureSize
#########################################################################################
# Decoder
#########################################################################################
class NodeClassifier(nn.Module):
def __init__(self, featureSize, hiddenSize):
super(NodeClassifier, self).__init__()
self.first = nn.Linear(featureSize, hiddenSize)
self.tanh = nn.Tanh()
self.second = nn.Linear(hiddenSize, 3)
self.softmax = nn.Softmax()
def forward(self, feature):
out = self.first(feature)
out = self.tanh(out)
out = self.second(out)
out = self.softmax(out)
return out
class Desampler(nn.Module):
def __init__(self, featureSize, hiddenSize):
super(Desampler, self).__init__()
self.mlp1 = nn.Linear(featureSize, hiddenSize)
self.mlp2 = nn.Linear(hiddenSize, featureSize)
self.tanh = nn.Tanh()
def forward(self, input):
output = self.tanh(self.mlp1(input))
output = self.tanh(self.mlp2(output))
return output
class AdjDecoder(nn.Module):
def __init__(self, featureSize, hiddenSize):
super(AdjDecoder, self).__init__()
self.decode = nn.Linear(featureSize, hiddenSize)
self.second = nn.Linear(hiddenSize, hiddenSize)
self.left = nn.Linear(hiddenSize, featureSize)
self.right = nn.Linear(hiddenSize, featureSize)
self.tanh = nn.Tanh()
def forward(self, parent_in):
out = self.decode(parent_in)
out = self.tanh(out)
out = self.second(out)
out = self.tanh(out)
l = self.left(out)
r = self.right(out)
l = self.tanh(l)
r = self.tanh(r)
return l, r
class SymDecoder(nn.Module):
def __init__(self, featureSize, symmetrySize, hiddenSize):
super(SymDecoder, self).__init__()
self.decode = nn.Linear(featureSize, hiddenSize)
self.second = nn.Linear(hiddenSize, hiddenSize)
self.tanh = nn.Tanh()
self.left = nn.Linear(hiddenSize, featureSize)
self.right = nn.Linear(hiddenSize, symmetrySize)
def forward(self, parent_in):
out = self.decode(parent_in)
out = self.tanh(out)
out = self.second(out)
out = self.tanh(out)
f = self.left(out)
f = self.tanh(f)
s = self.right(out)
s = self.tanh(s)
return f, s
class BoxDecoder(nn.Module):
def __init__(self, boxSize, featureSize, hiddenSize):
super(BoxDecoder, self).__init__()
self.first = nn.Linear(featureSize, hiddenSize)
self.decode = nn.Linear(hiddenSize, boxSize)
self.tanh = nn.Tanh()
def forward(self, parent_in):
out = self.first(parent_in)
out = self.tanh(out)
out = self.decode(out)
out = self.tanh(out)
return out
class MergeTwoCode(nn.Module):
def __init__(self, featureSize, hiddenSize):
super(MergeTwoCode, self).__init__()
self.left = nn.Linear(featureSize, hiddenSize)
self.right = nn.Linear(featureSize, hiddenSize, bias=False)
self.second = nn.Linear(hiddenSize, hiddenSize)
self.third = nn.Linear(hiddenSize, featureSize)
self.tanh = nn.Tanh()
def forward(self, left_in, right_in):
out = self.left(left_in)
out += self.right(right_in)
out = self.tanh(out)
out = self.second(out)
out = self.tanh(out)
out = self.third(out)
out = self.tanh(out)
return out
class GRASSDecoder(nn.Module):
def __init__(self, config):
super(GRASSDecoder, self).__init__()
self.boxDecoder = BoxDecoder(
boxSize=config.boxSize, featureSize=config.featureSize, hiddenSize=config.hiddenSize)
self.symDecoder = SymDecoder(
featureSize=config.featureSize, symmetrySize=config.symmetrySize, hiddenSize=config.hiddenSize)
self.adjDecoderIncomplete = AdjDecoder(
featureSize=config.featureSize*2, hiddenSize=config.hiddenSize*2)
self.boxDecoderIncomplete = BoxDecoder(
boxSize=config.boxSize, featureSize=config.featureSize*2, hiddenSize=config.hiddenSize*2)
self.symDecoderIncomplete = SymDecoder(
featureSize=config.featureSize*2, symmetrySize=config.symmetrySize, hiddenSize=config.hiddenSize*2)
self.nodeClassifierIncomplete = NodeClassifier(
featureSize=config.featureSize*2, hiddenSize=config.hiddenSize)
self.adjDecoderRedundant = AdjDecoder(
featureSize=config.featureSize*2, hiddenSize=config.hiddenSize*2)
self.boxDecoderRedundant = BoxDecoder(
boxSize=config.boxSize, featureSize=config.featureSize*2, hiddenSize=config.hiddenSize*2)
self.symDecoderRedundant = SymDecoder(
featureSize=config.featureSize*2, symmetrySize=config.symmetrySize, hiddenSize=config.hiddenSize*2)
self.nodeClassifierRedundant = NodeClassifier(
featureSize=config.featureSize*2, hiddenSize=config.hiddenSize)
self.desampler = Desampler(
featureSize=config.featureSize, hiddenSize=config.hiddenSize)
self.getOutter = MergeTwoCode(
featureSize=config.featureSize, hiddenSize=config.hiddenSize)
self.mergeOutter = MergeTwoCode(
featureSize=config.featureSize, hiddenSize=config.hiddenSize)
def classLossLayerIncomplete(self, f1, f2):
f = self.nodeClassifierIncomplete(f1)
return torch.log(f).mul(f2).sum(1).mul(-0.2)
def classLayerIncomplete(self, f):
l = self.nodeClassifierIncomplete(f)
_, op = torch.max(l, 1)
return op
def classLossLayerRedundant(self, f1, f2):
f = self.nodeClassifierRedundant(f1)
return torch.log(f).mul(f2).sum(1).mul(-0.2)
def classLayerRedundant(self, f):
l = self.nodeClassifierRedundant(f)
_, op = torch.max(l, 1)
return op
#########################################################################################
# Utility
#########################################################################################
def vrrotvec2mat_cpu(rotvector):
s = math.sin(rotvector[3])
c = math.cos(rotvector[3])
t = 1 - c
x = rotvector[0]
y = rotvector[1]
z = rotvector[2]
m = torch.FloatTensor([[t*x*x+c, t*x*y-s*z, t*x*z+s*y], [t*x *
y+s*z, t*y*y+c, t*y*z-s*x], [t*x*z-s*y, t*y*z+s*x, t*z*z+c]])
return m
def vrrotvec2mat(rotvector):
s = math.sin(rotvector[3])
c = math.cos(rotvector[3])
t = 1 - c
x = rotvector[0]
y = rotvector[1]
z = rotvector[2]
m = torch.FloatTensor([[t*x*x+c, t*x*y-s*z, t*x*z+s*y], [t*x*y+s*z,
t*y*y+c, t*y*z-s*x], [t*x*z-s*y, t*y*z+s*x, t*z*z+c]]).cuda()
return m
#########################################################################################
# Merge training operation
#########################################################################################
class GRASSMerge(nn.Module):
def __init__(self, config, encoder, decoder):
super(GRASSMerge, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.config = config
########################################################
# Encoder Related
########################################################
def leafNodeTest(self, box):
return self.encoder.boxEncoder(box)
def adjNodeTest(self, left, right):
return self.encoder.adjEncoder(left, right)
def symNodeTest(self, feature, sym):
return self.encoder.symEncoder(feature, sym)
def symNodeFeature(self, feature, sym):
return self.encoder.symEncoder(feature, sym)
def leafNode(self, box):
return self.encoder.boxEncoder(box)
def leafNodeWithNoise(self, box):
s = box.size()[0]
noise1 = Variable(box.data.new(s, 3).normal_(0, 0.08))
noise2 = Variable(box.data.new(s, 3).normal_(0, 0.03))
noise3 = Variable(box.data.new(s, 3).normal_(0, 0.08))
noise4 = Variable(box.data.new(s, 3).normal_(0, 0.03))
noise = torch.cat((noise1, noise2, noise3, noise4), 1)
return self.encoder.boxEncoder(box + noise)
def adjNode(self, left, right):
return self.encoder.adjEncoder(left, right)
def adjNodeWithNoise(self, left, right):
noiseL = Variable(left.data.new(left.size()).normal_(0, 0.05))
noiseR = Variable(right.data.new(right.size()).normal_(0, 0.05))
return self.encoder.adjEncoder(left + noiseL, right + noiseR)
def symNode(self, feature, sym):
return self.encoder.symEncoder(feature, sym)
def symNodeWithNoise(self, feature, sym):
#noiseL = Variable(feature.data.new(feature.size()).normal_(0, 0.05))
noiseS = Variable(sym.data.new(sym.size()).normal_(0, 0.05))
return self.encoder.symEncoder(feature, sym + noiseS)
########################################################
# Decoder Related
########################################################
def deSampleLayer(self, feature):
return self.decoder.desampler(feature)
def outterNode(self, outter, inner):
return self.decoder.getOutter(outter, inner)
def boxNode(self, outter, inner):
feature = self.decoder.mergeOutter(outter, inner)
return self.decoder.boxDecoder(feature)
def symParaNode(self, outter, inner):
feature = self.decoder.mergeOutter(outter, inner)
return self.decoder.symDecoder(feature)
########################################################
# Utility Related
########################################################
def mseBoxLossLayer(self, f1, f2):
loss = ((f1.add(-f2))**2).sum(1).mul(0.4)
return loss
def mseSymLossLayer(self, f1, f2):
loss = ((f1.add(-f2))**2).sum(1).mul(3)
return loss
def addLayer(self, f1, f2):
return f1.add_(f2)
def contrastiveLayer(self, f1, f2, f3):
fa = F.relu(f1.mul(2).add_(-f2))
fb = F.relu(f3.mul(2).add_(-f2))
return fa + fb
def concat(self, feature, inner):
return torch.cat((feature, inner), 1)
def lossPostProcessing(self, loss1, loss2):
l = torch.cat((loss1.unsqueeze(1), loss2.unsqueeze(1)), 1)
l = torch.min(l, 1)[1].mul(9).add(1).type(torch.cuda.FloatTensor)
return loss2.mul(l)
def cat4LossGeneral(self, vqLoss, loss, claLoss, eLoss):
vqLoss = vqLoss.unsqueeze(1)
loss = loss.unsqueeze(1)
claLoss = claLoss.unsqueeze(1)
eLoss = eLoss.unsqueeze(1)
return torch.cat((loss, vqLoss, claLoss, eLoss), 1)
def node_add_f(self, f, node):
node.encode_f = f
def vectorAdder(self, v1, v2):
return v1.add_(v2)
def tensor_cat(self, x, y):
return torch.cat((x,y))
def zero_tensor(self, f):
t = torch.zeros(f.size()[0], dtype=torch.float)
if self.config.cuda:
t = t.cuda()
return t
########################################################
# VQ Related
########################################################
def vqlizationLoss(self, feature):
f = feature.view(-1, self.encoder.embedding_dim)
W = self.encoder.dict.weight
def L2_dist(a, b):
return ((a - b) ** 2)
j = L2_dist(f[:, None], W[None, :]).sum(2).min(1)[1]
W_j = W[j]
f_sg = f.detach()
W_j_sg = W_j.detach()
loss = L2_dist(f, W_j_sg).sum(1) + L2_dist(f_sg, W_j).sum(1) * 0.25
loss = loss.view(-1, int(self.encoder.featureLength /
self.encoder.embedding_dim))
loss = loss.mean(1)
return loss
def vqlizationFeature(self, feature):
f = feature.view(-1, self.encoder.embedding_dim)
W = self.encoder.dict.weight
def L2_dist(a, b):
return ((a - b) ** 2)
j = L2_dist(f[:, None], W[None, :]).sum(2).min(1)[1]
W_j = W[j]
out = W_j.view(-1, self.encoder.featureLength)
return out
def vqlizationWithLoss(self, feature):
f = feature.view(-1, self.encoder.embedding_dim)
W = self.encoder.dict.weight
def L2_dist(a, b):
return ((a - b) ** 2)
j = L2_dist(f[:, None], W[None, :]).sum(2).min(1)[1]
W_j = W[j]
out = W_j.view(-1, self.encoder.featureLength)
f_sg = f.detach()
W_j_sg = W_j.detach()
loss = L2_dist(f, W_j_sg).sum(1) + L2_dist(f_sg, W_j).sum(1) * 0.25
loss = loss.view(-1, int(self.encoder.featureLength /
self.encoder.embedding_dim))
loss = loss.mean(1)
return loss, out
def vqlizationWithOutLoss(self, feature):
f = feature.view(-1, self.encoder.embedding_dim)
W = self.encoder.dict.weight.detach()
def L2_dist(a, b):
return ((a - b) ** 2)
j = L2_dist(f[:, None], W[None, :]).sum(2).min(1)[1]
W_j = W[j]
out = W_j.view(-1, self.encoder.featureLength)
return out
def vqlizationWithLoss2(self, feature):
f = feature.view(-1, self.encoder.embedding_dim)
W = self.encoder.dict.weight.detach()
def L2_dist(a, b):
return ((a - b) ** 2)
j = L2_dist(f[:, None], W[None, :]).sum(2).min(1)[1]
W_j = W[j]
out = W_j.view(-1, self.encoder.featureLength)
loss = L2_dist(f, W_j).sum(1)
loss = loss.view(-1, int(self.encoder.featureLength /
self.encoder.embedding_dim))
loss = loss.mean(1)
return loss, out