-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
235 lines (206 loc) · 8.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import time
import os
import torch
import util
from time import strftime
from datetime import datetime
from dynamicplot import DynamicPlot
from torchfoldext import FoldExt
from chairDataset import ChairDataset, Tree
from torch.autograd import Variable
from modelVQContext import GRASSEncoder, GRASSDecoder, GRASSMerge
config = util.get_args()
config.cuda = not config.no_cuda
if config.gpu < 0 and config.cuda:
config.gpu = 0
torch.cuda.set_device(config.gpu)
if config.cuda and torch.cuda.is_available():
print("using CUDA on GPU ", config.gpu)
else:
print("Not using CUDA")
if config.finetune:
print("fintune phase")
encoder = torch.load('./models/vq_encoder_model.pkl')
decoder = torch.load('./models/vq_decoder_model.pkl')
else:
encoder = GRASSEncoder(config)
decoder = GRASSDecoder(config)
if config.cuda:
encoder.cuda()
decoder.cuda()
model = GRASSMerge(config, encoder, decoder)
print("Loading data ......", end='', flush=True)
grass_data = ChairDataset(config.data_path)
def my_collate(batch):
return batch
train_iter = torch.utils.data.DataLoader(grass_data, batch_size=config.batch_size, shuffle=True, collate_fn=my_collate)
print("DONE")
encoder_opt = torch.optim.Adam(encoder.parameters(), lr=1e-3)
decoder_opt = torch.optim.Adam(decoder.parameters(), lr=1e-3)
print("Start training ...... ")
start = time.time()
if config.save_snapshot:
if not os.path.exists(config.save_path):
os.makedirs(config.save_path)
snapshot_folder = os.path.join(config.save_path, 'snapshots_'+strftime("%Y-%m-%d_%H-%M-%S",gmtime()))
if not os.path.exists(snapshot_folder):
os.makedirs(snapshot_folder)
if config.save_log:
fd_log = open('training_log.log', mode='a')
fd_log.write('\n\nTraining log at '+datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
fd_log.write('\n#epoch: {}'.format(config.epochs))
fd_log.write('\nbatch_size: {}'.format(config.batch_size))
fd_log.write('\ncuda: {}'.format(config.cuda))
fd_log.flush()
header = ' Time Epoch Iteration Progress(%) Loss'
log_template = ' '.join('{:>9s},{:>5.0f}/{:<5.0f},{:>5.0f}/{:<5.0f},{:>9.1f}%,{:>11.2f}'.split(','))
total_iter = config.epochs * len(train_iter)
if not config.no_plot:
plot_x = [x for x in range(total_iter)]
plot_total_loss = [None for x in range(total_iter)]
dyn_plot = DynamicPlot(title='Training loss over epoches', xdata=plot_x,
ydata={'Total_loss':plot_total_loss})
iter_id = 0
max_loss = 0
def encode_fold(fold, tree):
def encode_node(node):
if node.is_leaf():
if config.finetune:
n = fold.add('leafNode', node.box_noise)
else:
n = fold.add('leafNode', node.box)
return n
if node.is_adj():
left = encode_node(node.left)
right = encode_node(node.right)
n = fold.add('adjNode', left, right)
return n
if node.is_sym():
feature = encode_node(node.left)
if config.finetune:
n = fold.add('symNode', feature, node.sym_noise)
else:
n = fold.add('symNode', feature, node.sym)
return n
encoding = encode_node(tree.root)
return encoding
def decode_fold(fold, feature, tree):
def encode_node(node):
if node.is_leaf():
if config.finetune:
n = fold.add('leafNode', node.box_noise)
else:
n = fold.add('leafNode', node.box)
return n
if node.is_adj():
left = encode_node(node.left)
right = encode_node(node.right)
n = fold.add('adjNode', left, right)
return n
if node.is_sym():
feature = encode_node(node.left)
if config.finetune:
n = fold.add('symNode', feature, node.sym_noise)
else:
n = fold.add('symNode', feature, node.sym)
return n
def decode_node(feature, node):
if node.is_leaf():
f = encode_node(node)
reBox = fold.add('boxNode', feature, f)
#new_node = Tree.Node(box=reBox, node_type=Tree.NodeType.BOX)
return fold.add('mseBoxLossLayer', reBox, node.box)
elif node.is_adj():
d = fold.add('deSampleLayer', feature)
if config.finetune:
vqLoss, _ = fold.add('vqlizationWithLoss2', d).split(2)
_, feature = fold.add('vqlizationWithLoss2', feature).split(2)
else:
vqLoss = fold.add('vqlizationLoss', d)
feature = fold.add('vqlizationFeature', feature)
left_node = node.left
right_node = node.right
fl = encode_node(left_node)
fr = encode_node(right_node)
left_f = fold.add('outterNode', feature, fr)
right_f = fold.add('outterNode', feature, fl)
loss1 = decode_node(left_f, node.left)
loss2 = decode_node(right_f, node.right)
l_vq = fold.add('vectorAdder', vqLoss, loss1)
loss = fold.add('vectorAdder',l_vq, loss2)
return loss
elif node.is_sym():
d = fold.add('deSampleLayer', feature)
if config.finetune:
vqLoss, _ = fold.add('vqlizationWithLoss2', d).split(2)
_, feature = fold.add('vqlizationWithLoss2', feature).split(2)
else:
vqLoss = fold.add('vqlizationLoss', d)
feature = fold.add('vqlizationFeature', feature)
f = encode_node(node)
new_f, sym_f = fold.add('symParaNode', feature, f).split(2)
symLoss = fold.add('mseSymLossLayer', sym_f, node.sym)
loss = decode_node(new_f, node.left)
l_vq = fold.add('vectorAdder', vqLoss, loss)
loss = fold.add('vectorAdder', l_vq, symLoss)
return loss
loss = decode_node(feature, tree.root)
return loss
for epoch in range(config.epochs):
print(header)
for batch_idx, batch in enumerate(train_iter):
enc_fold = FoldExt(cuda=config.cuda)
enc_fold_nodes = []
for example in batch:
enc_fold_nodes.append(encode_fold(enc_fold, example))
enc_fold_nodes = enc_fold.apply(model, [enc_fold_nodes])
enc_fold_nodes = torch.split(enc_fold_nodes[0], 1, 0)
dec_fold = FoldExt(cuda=config.cuda)
dec_fold_nodes = []
for example, fnode in zip(batch, enc_fold_nodes):
if config.finetune:
example.addNoise()
dec_fold_nodes.append(decode_fold(dec_fold, fnode, example))
total_loss = dec_fold.apply(model, [dec_fold_nodes])
total_loss = total_loss[0].sum() / len(batch)
encoder_opt.zero_grad()
decoder_opt.zero_grad()
total_loss.backward()
encoder_opt.step()
decoder_opt.step()
# report statustucs
if batch_idx % config.show_log_every == 0:
print(log_template.format(strftime("%H:%M:%S",time.gmtime(time.time()-start)),
epoch, config.epochs, 1+batch_idx, len(train_iter),
100. * (1+batch_idx+len(train_iter)*epoch) / (len(train_iter)*config.epochs),
total_loss.item()))
# Plot losses
if not config.no_plot:
plot_total_loss[iter_id] = total_loss.data[0]
max_loss = max(max_loss, total_loss.data[0])
dyn_plot.setxlim(0., (iter_id+1)*1.05)
dyn_plot.setylim(0., max_loss*1.05)
dyn_plot.update_plots(ydata={'Total_loss':plot_total_loss})
iter_id += 1
# Save snapshots of the models being trained
if config.save_snapshot and (epoch + 1) % config.save_snapshot_every == 0:
print("Saving snapshots of the models ...... ", end='', flush=True)
torch.save(encoder, snapshot_folder +
'//vae_encoder_model_epoch_{}_loss_{:.2f}.pkl'.format(epoch + 1, total_loss.data[0]))
torch.save(decoder, snapshot_folder +
'//vae_decoder_model_epoch_{}_loss_{:.2f}.pkl'.format(epoch + 1, total_loss.data[0]))
print("DONE")
# Save training log
if config.save_log and (epoch + 1) % config.save_log_every == 0:
fd_log = open('training_log.log', mode='a')
fd_log.write('\nepoch:{} total_loss:{:.2f}'.format(epoch + 1, total_loss.data[0]))
fd_log.close()
# Save the final models
print("Saving final models ...... ", end='', flush=True)
if config.finetune:
torch.save(encoder, config.save_path + '/vq_encoder_model_finetune.pkl')
torch.save(decoder, config.save_path + '/vq_decoder_model_finetune.pkl')
else:
torch.save(encoder, config.save_path + '/vq_encoder_model.pkl')
torch.save(decoder, config.save_path + '/vq_decoder_model.pkl')
print("DONE")