-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcommon_utils.py
296 lines (229 loc) · 9.03 KB
/
common_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import cv2
import PIL
PIL.Image.init()
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision.transforms as transforms
from PIL import Image
import torchvision
import os
import functools
import torchvision as tv
import pathlib
import torch.nn.functional as F
import random
from typing import Any, List, Tuple, Union
resize = functools.partial(F.interpolate, mode = 'bicubic', align_corners = True)
downsample = functools.partial(F.interpolate, mode = 'bilinear', align_corners = True)
adaptive_pool = functools.partial(F.interpolate, mode = 'area')
def toggle_device(args, device):
out = []
for th in args:
out.append(th.to(device))
return out
def toggle_grad(models, flag = True):
for model in models:
try:
for p in model.parameters():
p.requires_grad = flag
except:
model.requires_grad = flag
def show_image(x, in_type = 'matplot', in_range = '0,1', **kwargs):
x = tensor_array_pil(x, in_type = in_type, out_type = 'matplot', in_range = in_range, out_range = '0,1', **kwargs)
plt.figure()
plt.imshow(x)
plt.show()
class EasyDict(dict):
"""Convenience class that behaves like a dict but allows access with the attribute syntax."""
def __getattr__(self, name: str) -> Any:
try:
return self[name]
except KeyError:
raise AttributeError(name)
def __setattr__(self, name: str, value: Any) -> None:
self[name] = value
def __delattr__(self, name: str) -> None:
del self[name]
def show_array_image(x, ):
assert x.shape[-1] == 1 or x.shape[-1] == 3
plt.figure()
plt.imshow(x)
plt.show()
def show_tensor_image(x, nrow = 1):
x = ((x + 1) / 2).clamp(0, 1)
x = torchvision.utils.make_grid(x, nrow = nrow, normalize = False)
x = x.detach().cpu().permute(1, 2, 0).numpy()
plt.figure()
plt.imshow(x)
plt.show()
def check_shape(a, b):
for i, s in enumerate(a.shape):
if s != b[i]:
raise Exception('Shape error, input shape {}, correct shape {}'.format(a.shape, b))
def lerp(w1, w2, beta):
assert w1.shape == w2.shape
w = w1 * beta + w2 * (1 - beta)
return w
def make_dir(path, type = 'dir'):
assert type in ['dir', 'path']
path = pathlib.Path(path)
if type == 'dir':
path.mkdir(exist_ok = True, parents = True)
if type == 'path':
path.parent.mkdir(exist_ok = True, parents = True)
def torch_cat(args, dim = 0):
if args[0] is None:
return torch.cat(args[1:], dim = dim)
else:
return torch.cat(args, dim = dim)
def denorm(x):
return (x + 1) / 2
def tensor_array_pil(image, in_type = 'tensor', out_type = 'pil', in_range = '0,1', out_range = '0,1'):
'''
image in [0,1]
'''
assert in_type in ['tensor', 'cv2', 'matplot', 'pil']
assert out_type in ['tensor', 'cv2', 'matplot', 'pil']
assert in_range in ['0,1', '-1,1', '0,255']
assert out_range in ['0,1', '-1,1', '0,255']
if in_type == 'tenor' and isinstance(image, torch.Tensor):
if in_range == '0,255':
image = torch.clip(image.to(torch.float) / 255, 0, 1)
elif in_range == '-1,1':
image = torch.clip((image + 1) / 2, 0, 1)
if out_range == '0,255':
image = (image * 255).to(torch.uint8)
elif out_range == '-1,1':
image = (image - 0.5) / 0.5
if out_type == 'tensor':
return image if image.ndim == 4 else image.unsqueeze(0)
image = image.squeeze(0) if image.ndim == 4 else image
image = image.detach().cpu().permute(1, 2, 0).numpy()
if out_type == 'cv2':
image = image[..., ::-1]
elif out_type == 'pil':
image = Image.fromarray(image)
return image
elif in_type == 'cv2' or 'matplot' or 'pil':
image = np.array(image)
if in_range == '0,1':
image = image * 255
elif in_range == '-1,1':
image = 255 * ((image + 1) / 2)
image = np.clip(image, 0, 255)
tensor_image = image_to_tensor(image, in_type = in_type, out_ndim = 3, out_range = out_range)
return tensor_array_pil(tensor_image, in_type = 'tensor', out_type = out_type, in_range = '0,255',
out_range = out_range)
def image_to_tensor(image, in_type = 'cv2', out_ndim = 4, in_range = '0,255', out_range = '-1,1'):
""" input must range from 0 to 255"""
assert in_type.lower() in ['cv2', 'pil', 'matplot']
assert out_ndim in [3, 4]
assert out_range in ['-1,1', '0,1', '0,255']
if out_range == '-1,1':
normalize = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
elif out_range == '0,1':
normalize = lambda x: x
elif out_range == '0,255':
normalize = lambda x: 255.0 * x
tensor_img = eval(f'convert_{in_type}_to_tensor')(image, normalize = normalize)
if out_ndim == 4:
return torch.unsqueeze(tensor_img, 0)
return tensor_img
def hwc_to_chw(hwc_image):
return hwc_image.transpose(2, 0, 1)
def convert_PIL_to_tensor(pil_image, normalize = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])):
transform = transforms.Compose([
transforms.ToTensor(),
normalize])
return transform(pil_image)
def convert_cv2_to_tensor(bgr_image, normalize = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])):
rgb_image = bgr_image[..., ::-1]
transform = transforms.Compose([
transforms.ToTensor(),
normalize])
return transform(rgb_image)
def convert_matplot_to_tensor(rgb_image, normalize = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])):
transform = transforms.Compose([
transforms.ToTensor(),
normalize])
return transform(rgb_image)
composed = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(mean = [0.5] * 3, std = [0.5] * 3)])
def read_image(path, range = '-1,1', type = 'tensor', size = None):
assert range in ['-1,1', '0,1', '0,255']
assert type in ['array', 'tensor']
img = np.ascontiguousarray(cv2.imread(path)[..., ::-1])
if size is not None:
img = cv2.resize(img, size)
img = img.astype(np.float)
if range == '0,1':
img = img / 255
elif range == '-1,1':
img = (img - 127.5) / 127.5
if type == 'array':
return img
elif type == 'tensor':
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0)
return img
def pil_loader(path):
# open path as file to avoid ResourceWarning
# (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def save_pth(file, path):
path = pathlib.Path(path)
path.parent.mkdir(exist_ok = True, parents = True)
torch.save(file, path)
def save_image(img, path, nrow = 1, range = '-1,1', type = 'tensor', **kwargs):
path = pathlib.Path(path)
path.parent.mkdir(exist_ok = True, parents = True)
assert range in ['0,1', '-1,1', '0,255']
if range == '0,1':
img = img
if range == '-1,1':
img = ((img + 1) / 2)
if range == '0,255':
img = img / 255
# img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8).cpu()[0].numpy()[..., ::-1]
img = img.clamp(0, 1)
tv.utils.save_image(img, str(path), normalize = False, nrow = nrow)
# Load a model's weights
def join_strings(base_string, strings):
return base_string.join([item for item in strings if item])
def show(img):
plt.figure(figsize = (12, 8))
npimg = img.cpu().detach().squeeze(0).permute(1, 2, 0).numpy()
plt.figure()
plt.imshow(npimg)
plt.show()
def seed_all(seed, deterministic = False):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def load_image_paths(image_paths):
def recursive(image_paths, return_paths):
if isinstance(image_paths, str):
if os.path.isdir(image_paths):
_all_fnames = [os.path.join(root, fname) for root, _dirs, files in os.walk(image_paths) for fname in
files]
image_paths = sorted(
fname for fname in _all_fnames if os.path.splitext(fname)[1].lower() in PIL.Image.EXTENSION)
elif os.path.exists(image_paths):
image_paths = [image_paths]
else:
return
return_paths += image_paths
elif isinstance(image_paths, list):
for image_path in image_paths:
recursive(image_path, return_paths)
return_paths = []
# import pdb;
# pdb.set_trace()
recursive(image_paths, return_paths)
return return_paths