-
Notifications
You must be signed in to change notification settings - Fork 1
/
export_MNIST.py
199 lines (178 loc) · 6.63 KB
/
export_MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import *
from torchvision.transforms.transforms import *
from torchvision.transforms.functional import *
from tqdm import tqdm
from torchplus.utils import Init, save_image2
if __name__ == "__main__":
batch_size = 32
class_num = 10
root_dir = "./logZZPMAIN.export"
target_pkl = "/path/to/target_classifier_mnist.pkl"
inv_pkl = "/path/to/myinversion_48.pkl"
h = 32
w = 32
init = Init(
seed=9970,
log_root_dir=root_dir,
backup_filename=__file__,
tensorboard=True,
comment=f"MNIST ATTACK export mse11 48",
)
output_device = init.get_device()
writer = init.get_writer()
log_dir = init.get_log_dir()
data_workers = 2
transform = Compose([Grayscale(num_output_channels=1), Resize((h, w)), ToTensor()])
mnist_train_ds = MNIST(
root="./data", train=True, transform=transform, download=True
)
mnist_test_ds = MNIST(
root="./data", train=False, transform=transform, download=True
)
mnist_train_ds_len = len(mnist_train_ds)
mnist_test_ds_len = len(mnist_test_ds)
train_ds = mnist_train_ds
test_ds = mnist_test_ds
train_ds_len = len(train_ds)
test_ds_len = len(test_ds)
print(train_ds_len)
print(test_ds_len)
# for evaluate
train_dl = DataLoader(
dataset=train_ds,
batch_size=batch_size,
shuffle=False,
num_workers=data_workers,
drop_last=False,
pin_memory=True,
)
# for attack
test_dl = DataLoader(
dataset=test_ds,
batch_size=batch_size,
shuffle=True,
num_workers=data_workers,
drop_last=True,
pin_memory=True,
)
class Classifier(nn.Module):
def __init__(self, out_features):
super(Classifier, self).__init__()
self.out_features = out_features
self.conv1 = nn.Conv2d(1, 128, 3, 1, 1)
self.conv2 = nn.Conv2d(128, 256, 3, 1, 1)
self.conv3 = nn.Conv2d(256, 512, 3, 1, 1)
self.bn1 = nn.BatchNorm2d(128)
self.bn2 = nn.BatchNorm2d(256)
self.bn3 = nn.BatchNorm2d(512)
self.mp1 = nn.MaxPool2d(2, 2)
self.mp2 = nn.MaxPool2d(2, 2)
self.mp3 = nn.MaxPool2d(2, 2)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.relu3 = nn.ReLU()
self.fc1 = nn.Linear(8192, 50)
self.dropout = nn.Dropout()
self.fc2 = nn.Linear(50, self.out_features)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.mp1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.mp2(x)
x = self.relu2(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.mp3(x)
x = self.relu3(x)
x = x.view(-1, 8192)
x = self.fc1(x)
x = self.dropout(x)
x = self.fc2(x)
return x
class PowerAmplification(nn.Module):
def __init__(
self, in_features: int, alpha: float = None, device=None, dtype=None
) -> None:
super(PowerAmplification, self).__init__()
factory_kwargs = {"device": device, "dtype": dtype}
self.in_features = in_features
if alpha is not None:
self.alpha = Parameter(torch.tensor([alpha], **factory_kwargs))
else:
self.alpha = Parameter(torch.rand(1, **factory_kwargs))
def forward(self, input: Tensor) -> Tensor:
alpha = self.alpha.expand(self.in_features)
return torch.pow(input, alpha)
class Inversion(nn.Module):
def __init__(self, in_channels):
super(Inversion, self).__init__()
self.in_channels = in_channels
self.deconv1 = nn.ConvTranspose2d(self.in_channels, 512, 4, 1)
self.deconv2 = nn.ConvTranspose2d(512, 256, 4, 2, 1)
self.deconv3 = nn.ConvTranspose2d(256, 128, 4, 2, 1)
self.deconv4 = nn.ConvTranspose2d(128, 1, 4, 2, 1)
self.bn1 = nn.BatchNorm2d(512)
self.bn2 = nn.BatchNorm2d(256)
self.bn3 = nn.BatchNorm2d(128)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.relu3 = nn.ReLU()
self.sigmod = nn.Sigmoid()
def forward(self, x):
x = x.view(-1, self.in_channels, 1, 1)
x = self.deconv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.deconv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.deconv3(x)
x = self.bn3(x)
x = self.relu3(x)
x = self.deconv4(x)
x = self.sigmod(x)
return x
target_classifier = Classifier(class_num).train(False).to(output_device)
target_amplification = (
PowerAmplification(class_num, 1 / 11).train(False).to(output_device)
)
myinversion = Inversion(class_num).train(False).to(output_device)
assert os.path.exists(target_pkl)
target_classifier.load_state_dict(
torch.load(open(target_pkl, "rb"), map_location=output_device)
)
assert os.path.exists(inv_pkl)
myinversion.load_state_dict(
torch.load(open(inv_pkl, "rb"), map_location=output_device)
)
with torch.no_grad():
for i, (im, label) in enumerate(tqdm(train_dl, desc=f"priv")):
im = im.to(output_device)
label = label.to(output_device)
bs, c, h, w = im.shape
out = target_classifier.forward(im)
after_softmax = F.softmax(out, dim=-1)
after_softmax = target_amplification.forward(after_softmax)
rim = myinversion.forward(after_softmax)
save_image2(im.detach(), f"{log_dir}/priv/input/{i}.png", nrow=4)
save_image2(rim.detach(), f"{log_dir}/priv/output/{i}.png", nrow=4)
for i, (im, label) in enumerate(tqdm(test_dl, desc=f"aux")):
im = im.to(output_device)
label = label.to(output_device)
bs, c, h, w = im.shape
out = target_classifier.forward(im)
after_softmax = F.softmax(out, dim=-1)
after_softmax = target_amplification.forward(after_softmax)
rim = myinversion.forward(after_softmax)
save_image2(im.detach(), f"{log_dir}/aux/input/{i}.png", nrow=4)
save_image2(rim.detach(), f"{log_dir}/aux/output/{i}.png", nrow=4)
writer.close()