-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAbstractArrays.thy
100 lines (90 loc) · 2.77 KB
/
AbstractArrays.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
theory AbstractArrays
imports
"../../lib/TypHeapLib"
"../../lib/WordLemmaBucket"
begin
(*
* Return a list of addresses that contain an element for an array at location
* "p" of length "n".
*)
primrec
array_addrs :: "('a::mem_type) ptr \<Rightarrow> nat \<Rightarrow> 'a ptr list"
where
"array_addrs _ 0 = []"
| "array_addrs p (Suc n) = p # (array_addrs (p +\<^sub>p 1) n)"
declare array_addrs.simps(2) [simp del]
(* The first element is in the array if the array has non-zero length. *)
lemma hd_in_array_addrs [simp]:
"(x \<in> set (array_addrs x n)) = (n > 0)"
by (case_tac n, auto simp: array_addrs.simps(2))
lemma array_addrs_1 [simp]:
"array_addrs p (Suc 0) = [p]"
"array_addrs p 1 = [p]"
by (auto simp: array_addrs.simps(2))
(* All array elements are aligned if the array itself is aligned. *)
lemma array_addrs_ptr_aligned:
"\<lbrakk> x \<in> set (array_addrs p n); ptr_aligned p \<rbrakk> \<Longrightarrow> ptr_aligned x"
apply (induct n arbitrary: x p)
apply clarsimp
apply (clarsimp simp: array_addrs.simps(2))
apply (erule disjE)
apply clarsimp
apply atomize
apply (drule_tac x=x in spec)
apply (drule_tac x="p +\<^sub>p 1" in spec)
apply (clarsimp simp: ptr_aligned_plus)
done
(* Split off the last element in an array. *)
lemma set_array_addrs_unfold_last:
shows "set (array_addrs a (Suc n)) = set (array_addrs a n) \<union> {(a :: ('a::mem_type) ptr) +\<^sub>p int n}"
(is "?LHS a n = ?RHS a n")
proof (induct n arbitrary: a)
fix a
show "?LHS a 0 = ?RHS a 0"
by clarsimp
next
fix a n
assume induct: "\<And>a. ?LHS a n = ?RHS a n"
show "?LHS a (Suc n) = ?RHS a (Suc n)"
apply (subst array_addrs.simps(2))
apply (subst set.simps)
apply (subst induct [where a="a +\<^sub>p 1"])
apply (subst array_addrs.simps(2))
apply (subst set.simps)
apply (clarsimp simp: CTypesDefs.ptr_add_def field_simps insert_commute)
done
qed
(* Alternative representation of the set of array elements. *)
lemma set_array_addrs:
"set (array_addrs (p :: ('a::mem_type) ptr) n)
= {x. \<exists>k. x = p +\<^sub>p int k \<and> k < n }"
apply (induct n arbitrary: p)
apply (clarsimp simp: not_less)
apply (subst set_array_addrs_unfold_last)
apply atomize
apply (drule_tac x=p in spec)
apply (erule ssubst)
apply (rule set_eqI)
apply (rule iffI)
apply clarsimp
apply (erule disjE)
apply clarsimp
apply force
apply force
apply clarsimp
apply (drule_tac x=k in spec)
apply (clarsimp simp: not_less)
apply (subgoal_tac "k = n")
apply clarsimp
apply clarsimp
done
end