-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCorresXF.thy
942 lines (848 loc) · 37.4 KB
/
CorresXF.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
(*
* A stronger version of the "corres" framework, allowing return
* relationships to reference state data.
*)
theory CorresXF
imports
CCorresE
NonDetMonadEx
begin
(*
* Refinement with return extraction on the concrete side:
*
* For any step on the concrete side, there is an equivalent step on
* the abstract side.
*
* If the abstract step fails, we don't need refinement to hold.
*)
definition "corresXF_simple st xf P M M' \<equiv>
\<forall>s. (P s \<and> \<not> snd (M (st s))) \<longrightarrow> (\<forall>(r', t') \<in> fst (M' s).
(xf r' t', st t') \<in> fst (M (st s))) \<and> \<not> snd (M' s)"
(*
* A definition better suited to dealing with monads with exceptions.
*)
definition "corresXF st ret_xf ex_xf P A C \<equiv>
\<forall>s. P s \<and> \<not> snd (A (st s)) \<longrightarrow>
(\<forall>(r, t) \<in> fst (C s).
case r of
Inl r \<Rightarrow> (Inl (ex_xf r t), st t) \<in> fst (A (st s))
| Inr r \<Rightarrow> (Inr (ret_xf r t), st t) \<in> fst (A (st s)))
\<and> \<not> snd (C s)"
(* corresXF can be defined in terms of corresXF_simple. *)
lemma corresXF_simple_corresXF:
"(corresXF_simple st
(\<lambda>x s. case x of
Inl r \<Rightarrow> Inl (ex_state r s)
| Inr r \<Rightarrow> (Inr (ret_state r s))) P M M')
= (corresXF st ret_state ex_state P M M')"
apply (clarsimp simp: corresXF_simple_def corresXF_def)
apply (rule iffI)
apply clarsimp
apply (erule allE, erule impE, force)
apply (clarsimp split: sum.splits cong del: unit.case_cong)
apply (erule (1) my_BallE)
apply clarsimp
apply clarsimp
apply (erule_tac x=s in allE)
apply (clarsimp split: sum.splits cong del: unit.case_cong)
apply (erule (1) my_BallE)
apply clarsimp
done
lemma corresXF_simpleI: "\<lbrakk>
\<And>s' t' r'. \<lbrakk>P s'; \<not> snd (M (st s')); (r', t') \<in> fst (M' s')\<rbrakk>
\<Longrightarrow> (xf r' t', st t') \<in> fst (M (st s'));
\<And>s'. \<lbrakk>P s'; \<not> snd (M (st s')) \<rbrakk> \<Longrightarrow> \<not> snd (M' s')
\<rbrakk> \<Longrightarrow> corresXF_simple st xf P M M'"
apply atomize
apply (clarsimp simp: corresXF_simple_def)
done
lemma corresXF_I: "\<lbrakk>
\<And>s' t' r'. \<lbrakk>P s'; \<not> snd (M (st s')); (Inr r', t') \<in> fst (M' s')\<rbrakk>
\<Longrightarrow> (Inr (ret_state r' t'), st t') \<in> fst (M (st s'));
\<And>s' t' r'. \<lbrakk>P s'; \<not> snd (M (st s')); (Inl r', t') \<in> fst (M' s')\<rbrakk>
\<Longrightarrow> (Inl (ex_state r' t'), st t') \<in> fst (M (st s'));
\<And>s'. \<lbrakk>P s'; \<not> snd (M (st s')) \<rbrakk> \<Longrightarrow> \<not> snd (M' s')
\<rbrakk> \<Longrightarrow> corresXF st ret_state ex_state P M M'"
apply atomize
apply (clarsimp simp: corresXF_def)
apply (erule_tac x=s in allE, erule (1) impE)
apply (erule_tac x=s in allE, erule (1) impE)
apply (erule_tac x=s in allE, erule (1) impE)
apply (clarsimp split: sum.splits)
apply auto
done
lemma corresXF_assume_pre:
"\<lbrakk> \<And>s s'. \<lbrakk> P s'; s = st s' \<rbrakk> \<Longrightarrow> corresXF st xf_normal xf_exception P L R \<rbrakk> \<Longrightarrow> corresXF st xf_normal xf_exception P L R"
apply atomize
apply (clarsimp simp: corresXF_def)
apply force
done
lemma corresXF_guard_imp:
"\<lbrakk> corresXF st xf_normal xf_exception Q f g; \<And>s. P s \<Longrightarrow> Q s \<rbrakk>
\<Longrightarrow> corresXF st xf_normal xf_exception P f g"
apply (clarsimp simp: corresXF_def)
done
lemma corresXF_return:
"\<lbrakk> \<And>s. \<lbrakk> P s \<rbrakk> \<Longrightarrow> xf_normal b s = a \<rbrakk> \<Longrightarrow>
corresXF st xf_normal xf_exception P (returnOk a) (returnOk b)"
apply (clarsimp simp: corresXF_def return_def returnOk_def)
done
lemma corresXF_getsE:
"\<lbrakk> \<And>s. P s \<Longrightarrow> ret (g s) s = f (st s) \<rbrakk> \<Longrightarrow>
corresXF st ret ex P (getsE f) (getsE g)"
apply (monad_eq simp: corresXF_def getsE_def modifyE_def Ball_def split: sum.splits)
done
lemma corresXF_insert_guard:
"\<lbrakk> corresXF st ret ex Q A C; \<And>s. \<lbrakk> P s \<rbrakk> \<Longrightarrow> G (st s) \<longrightarrow> Q s \<rbrakk> \<Longrightarrow>
corresXF st ret ex P (guardE G >>=E (\<lambda>_. A)) C "
apply (monad_eq simp: corresXF_def getsE_def modifyE_def Ball_def guardE_def split: sum.splits)
done
lemma corresXF_exec_abs_guard:
"corresXF st ret_xf ex_xf (\<lambda>s. P s \<and> G (st s)) (A ()) C \<Longrightarrow> corresXF st ret_xf ex_xf P (guardE G >>=E A) C"
apply (clarsimp simp: guardE_def liftE_bindE)
apply (monad_eq simp: corresXF_def Ball_def split: sum.splits)
done
lemma corresXF_simple_exec:
"\<lbrakk> corresXF_simple st xf P A B; (r', s') \<in> fst (B s); \<not> snd (A (st s)); P s \<rbrakk>
\<Longrightarrow> (xf r' s', st s') \<in> fst (A (st s))"
apply (fastforce simp: corresXF_simple_def)
done
lemma corresXF_simple_fail:
"\<lbrakk> corresXF_simple st xf P A B; snd (B s); P s \<rbrakk>
\<Longrightarrow> snd (A (st s))"
apply (fastforce simp: corresXF_simple_def)
done
lemma corresXF_simple_no_fail:
"\<lbrakk> corresXF_simple st xf P A B; \<not> snd (A (st s)); P s \<rbrakk>
\<Longrightarrow> \<not> snd (B s)"
apply (fastforce simp: corresXF_simple_def)
done
lemma corresXF_exec_normal:
"\<lbrakk> corresXF st ret ex P A B; (Inr r', s') \<in> fst (B s); \<not> snd (A (st s)); P s \<rbrakk>
\<Longrightarrow> (Inr (ret r' s'), st s') \<in> fst (A (st s))"
using corresXF_simple_exec
apply (clarsimp simp: corresXF_def)
apply (clarsimp split: sum.splits)
apply (erule_tac x=s in allE)
apply clarsimp
apply (erule (1) my_BallE)
apply clarsimp
done
lemma corresXF_exec_except:
"\<lbrakk> corresXF st ret ex P A B; (Inl r', s') \<in> fst (B s); \<not> snd (A (st s)); P s \<rbrakk>
\<Longrightarrow> (Inl (ex r' s'), st s') \<in> fst (A (st s))"
apply (clarsimp simp: corresXF_def)
apply (erule allE, erule impE, force)
apply (clarsimp)
apply (erule (1) my_BallE)
apply (clarsimp split: sum.splits)
done
lemma corresXF_exec_fail:
"\<lbrakk> corresXF st ret ex P A B; snd (B s); P s \<rbrakk>
\<Longrightarrow> snd (A (st s))"
apply (subst (asm) corresXF_simple_corresXF[symmetric])
apply (auto elim!: corresXF_simple_fail)
done
lemma corresXF_intermediate:
"\<lbrakk> corresXF st ret_xf ex_xf P A' C;
corresXF id (\<lambda>r s. r) (\<lambda>r s. r) (\<lambda>s. \<exists>x. s = st x \<and> P x) A A' \<rbrakk> \<Longrightarrow>
corresXF st ret_xf ex_xf P A C"
apply (clarsimp simp: corresXF_def split: sum.splits)
apply fast
done
(*
* We can join two "corresXF_simple" statements together, if we can
* show that the second statement's precondition always holds after
* executing the first statement.
*)
lemma corresXF_simple_join:
assumes left_refines: "corresXF_simple st xf P L L'"
and right_refines: "\<And>x y. corresXF_simple st xf' (P' x y) (R x) (R' y)"
and precond_established: "\<lbrace> Q \<rbrace> L' \<lbrace> \<lambda>r s. P' (xf r s) r s \<rbrace>"
and q_implies_p: "\<And>s. Q s \<Longrightarrow> P s"
shows "corresXF_simple st xf' Q (L >>= R) (L' >>= R')"
(is "corresXF_simple _ _ _ ?abs ?conc")
proof (rule corresXF_simpleI)
fix s' t' r'
let ?s = "st s'"
let ?t = "st t'"
let ?r = "xf' r' t'"
assume s'_valid: "Q s'"
and abs_no_fail: " \<not> snd (?abs ?s)"
and final_state_exists: "(r', t') \<in> fst (?conc s')"
show "(?r, ?t) \<in> fst (?abs ?s)"
proof -
(* Give a name to the middle concrete state "mid_s'". *)
obtain mid_s' mid_r'
where "(mid_r', mid_s') \<in> fst (L' s') \<and> (r', t') \<in> fst (R' mid_r' mid_s')"
by (metis final_state_exists in_bind)
note mid_asms = this
(* mid_s' obeys the second refinement's precondition. *)
have mid_s'_valid: "P' (xf mid_r' mid_s') mid_r' mid_s'"
using mid_asms precond_established s'_valid use_valid
by fastforce
have left_refinement_step: "(xf mid_r' mid_s', st mid_s') \<in> fst (L ?s)"
apply (insert left_refines s'_valid abs_no_fail mid_asms q_implies_p)
apply (drule not_snd_bindI1)
apply (clarsimp simp: corresXF_simple_def)
apply force
done
have right_refinement_step: "(xf' r' t', st t') \<in> fst (R (xf mid_r' mid_s') (st mid_s'))"
apply (insert right_refines [where x="xf mid_r' mid_s'" and y="mid_r'"])
apply (insert mid_s'_valid abs_no_fail mid_asms)
apply (clarsimp simp: corresXF_simple_def)
apply (drule not_snd_bindI2)
apply (rule left_refinement_step)
apply force
done
show ?thesis
apply (clarsimp simp: in_bind)
apply (insert left_refinement_step right_refinement_step)
apply force
done
qed
next
fix s' t' r'
let ?s = "st s'"
let ?t = "st t'"
assume s'_valid: "Q s'"
and abs_no_fail: " \<not> snd (?abs ?s)"
show "\<not> snd (?conc s')"
apply (insert left_refines right_refines s'_valid abs_no_fail precond_established)
apply (insert not_snd_bindI1 [OF abs_no_fail] q_implies_p)
apply atomize
apply (clarsimp simp: snd_bind)
apply (clarsimp simp: corresXF_simple_def)
apply (frule (2) use_valid)
apply force
done
qed
lemma corresXF_join:
"\<lbrakk> corresXF st V E P L L'; \<And>x y. corresXF st V' E (P' x y) (R x) (R' y); \<lbrace> Q \<rbrace> L' \<lbrace> \<lambda>r s. P' (V r s) r s \<rbrace>, \<lbrace> \<lambda>_. \<top> \<rbrace>; \<And>s. Q s \<Longrightarrow> P s \<rbrakk> \<Longrightarrow>
corresXF st V' E Q (L >>=E R) (L' >>=E R')"
apply (subst (asm) corresXF_simple_corresXF[symmetric])+
apply (subst corresXF_simple_corresXF[symmetric])
apply (unfold bindE_def)
apply (erule corresXF_simple_join [where P'="\<lambda>a b s. (case b of Inl r \<Rightarrow> a = Inl (E r s) | Inr r \<Rightarrow> a = Inr (V r s) \<and> P' (theRight a) r s)"])
apply (simp add: corresXF_simple_def split: sum.splits unit.splits)
apply clarsimp
apply (clarsimp simp: NonDetMonad.lift_def
throwError_def return_def split: sum.splits
cong del: unit.case_cong)
apply atomize
apply (rule conjI)
apply clarsimp
apply (erule allE2, erule allE, erule impE, force)
apply clarsimp
apply (erule (1) my_BallE)
apply (clarsimp split: sum.splits cong del: unit.case_cong)
apply clarsimp
apply (erule allE2, erule allE, erule impE, force)
apply clarsimp
apply atomize
apply (clarsimp simp: NonDetMonad.validE_def split: sum.splits cong del: unit.case_cong)
apply simp
done
lemma corresXF_except:
"\<lbrakk> corresXF st V E P L L'; \<And>x y. corresXF st V E' (P' x y) (R x) (R' y); \<lbrace> Q \<rbrace> L' \<lbrace> \<lambda>_. \<top> \<rbrace>, \<lbrace> \<lambda>r s. P' (E r s) r s \<rbrace>; \<And>s. Q s \<Longrightarrow> P s \<rbrakk> \<Longrightarrow>
corresXF st V E' Q ( L <handle2> R) (L' <handle2> R')"
apply (subst (asm) corresXF_simple_corresXF[symmetric])+
apply (subst corresXF_simple_corresXF[symmetric])
apply (unfold handleE'_def)
apply (erule corresXF_simple_join [where P'="\<lambda>a b s. (case b of Inr r \<Rightarrow> a = Inr (V r s) | Inl r \<Rightarrow> a = Inl (E r s) \<and> P' (theLeft a) r s)"])
apply (simp add: corresXF_simple_def split: sum.splits unit.splits)
apply (clarsimp simp: NonDetMonad.lift_def throwError_def
return_def split: sum.splits unit.splits cong del:
unit.case_cong)
apply atomize
apply (rule conjI)
apply clarsimp
apply (erule allE2, erule allE, erule impE, force)
apply clarsimp
apply (erule (1) my_BallE)
apply (clarsimp split: sum.splits cong del: unit.case_cong)
apply clarsimp
apply (erule allE2, erule allE, erule impE, force)
apply clarsimp
apply (clarsimp simp: NonDetMonad.validE_def split: sum.splits cong del: unit.case_cong)
apply simp
done
lemma corresXF_cond:
"\<lbrakk> corresXF st V E P L L'; corresXF st V E P R R'; \<And>s. P s \<Longrightarrow> A (st s) = A' s \<rbrakk> \<Longrightarrow>
corresXF st V E P (condition A L R) (condition A' L' R')"
apply atomize
apply (clarsimp simp: corresXF_def)
apply (erule_tac x=s in allE)
apply (erule_tac x=s in allE)
apply (erule_tac x=s in allE)
apply (clarsimp split: condition_splits)
done
(* The concrete loop "B" terminates if the abstract loop "A" also terminates. *)
lemma corresXF_simple_loop_terminates:
assumes induct: "whileLoop_terminates C' A r' s'"
and s_match1: "s' = st s"
and s_match2: "r' = xf r s"
and body_corres: "\<And>x y. corresXF_simple st xf (\<lambda>s. P y s \<and> x = xf y s) (A x) (B y)"
and no_fail: "\<not> snd (whileLoop C' A r' s')"
and cond_match: "\<And>s r. P r s \<Longrightarrow> C r s = C' (xf r s) (st s)"
and precond: "P r s"
and pred_inv: "\<And>r. \<lbrace> \<lambda>s. P r s \<and> C r s \<and> \<not> snd (whileLoop C' A (xf r s) (st s)) \<rbrace> B r \<lbrace> \<lambda>r s. P r s \<rbrace>"
shows "whileLoop_terminates C B r s"
apply (insert induct s_match1 s_match2 no_fail precond)
apply (induct arbitrary: r s rule: whileLoop_terminates.induct)
apply (rule whileLoop_terminates.intros)
apply (clarsimp simp: cond_match)
apply clarsimp
apply (insert body_corres)
apply (clarsimp simp: corresXF_simple_def)
apply (frule snd_whileLoop_first_step)
apply (clarsimp simp: cond_match)
apply atomize
apply clarsimp
apply (erule allE2)
apply (erule impE)
apply (erule conjI)
apply (clarsimp simp: cond_match)
apply clarsimp
apply (rule whileLoop_terminates.intros(2))
apply (clarsimp simp: cond_match)
apply (clarsimp split: sum.splits)
apply (erule (1) my_BallE)
apply clarsimp
apply (erule (1) my_BallE)
apply clarsimp
apply (erule_tac x=a and y=b in allE2)
apply clarsimp
apply (frule use_valid [OF _ pred_inv])
apply (clarsimp simp: no_fail_def)
apply (clarsimp simp: cond_match)
apply (frule (1) snd_whileLoop_unfold)
apply simp
apply simp
done
lemma validE_by_corresXF:
"\<lbrakk> corresXF st ret_xf ex_xf P A C;
\<And>r s. Q' (ret_xf r s) (st s) \<Longrightarrow> Q r s;
\<And>r s. E' (ex_xf r s) (st s) \<Longrightarrow> E r s;
validE P' A Q' E';
no_fail P' A;
\<And>s. P s \<Longrightarrow> P' (st s) \<rbrakk>
\<Longrightarrow> validE P C Q E"
apply atomize
apply (clarsimp simp: corresXF_def validE_def valid_def no_fail_def split_def split: sum.splits)
apply fastforce
done
lemma nofail_by_corresXF:
"\<lbrakk> corresXF st ret_xf ex_xf (\<lambda>s. P' (st s)) A C;
no_fail P' A;
\<And>s. P s \<Longrightarrow> P' (st s) \<rbrakk> \<Longrightarrow>
no_fail P C"
apply (clarsimp simp: corresXF_def validE_def valid_def no_fail_def split_def split: sum.splits)
done
lemma corresXF_simple_snd_whileLoop:
assumes body_corres: "\<And>x y. corresXF_simple st xf (\<lambda>s. P x s \<and> y = xf x s) (A y) (B x)"
and cond_match: "\<And>s r. P r s \<Longrightarrow> C r s = C' (xf r s) (st s)"
and pred_inv: "\<And>r. \<lbrace> \<lambda>s. P r s \<and> C r s \<and> \<not> snd (whileLoop C' A (xf r s) (st s)) \<rbrace> B r \<lbrace> \<lambda>r s. P r s \<rbrace>"
and pred_eq: "\<And>s. P' x s \<Longrightarrow> y = xf x s"
and pred_imply: "\<And>s. P' x s \<Longrightarrow> P x s"
and P: "P' x s"
and no_fail_abs: "\<not> snd (whileLoop C' A y (st s))"
shows "\<not> snd (whileLoop C B x s)"
proof -
(* If the concrete body fails, so will the abstract body. *)
have conc_fail_impl_abs_fail:
"\<And>r s. \<lbrakk> P r s; snd (B r s) \<rbrakk> \<Longrightarrow> snd (A (xf r s) (st s))"
by (metis (mono_tags) body_corres corresXF_simple_fail)
have pred_eq': "y = xf x s"
by (auto intro: pred_eq P)
(* If the abstract loop terminates, so will the concrete
* loop. *)
have loop_term: "whileLoop_terminates C' A (xf x s) (st s) \<Longrightarrow> whileLoop_terminates C B x s"
apply (erule corresXF_simple_loop_terminates [where xf=xf and st=st and P="\<lambda>r s. P r s"])
apply simp
apply simp
apply fact
apply (metis P no_fail_abs pred_eq)
apply fact
apply (metis P pred_imply)
apply fact
done
(* Assume that the concrete spec fails. Thus,
* the abstract spec will also fail. *)
{
assume conc_fail: "snd (whileLoop C B x s)"
have "snd (whileLoop C' A (xf x s) (st s))"
using pred_imply [OF P] pred_eq'
proof (induct arbitrary: y rule: snd_whileLoop_induct [OF conc_fail])
(* If the concrete loop doesn't terminate,
* we need to prove that the abstract loop fails. *)
fix i
assume no_term: "\<not> whileLoop_terminates C B x s"
show ?thesis
by (metis loop_term no_term snd_conv whileLoop_def)
next
fix r s i
assume conc_body_fail: "snd (B r s)"
assume cond_true: "C r s"
assume pred_eq: "i = xf r s"
assume P: "P r s"
(* If the concrete body is going to fail, so must the
* abstract body. *)
have "snd (A (xf r s) (st s))"
by (metis P conc_body_fail conc_fail_impl_abs_fail pred_eq)
thus "snd (whileLoop C' A (xf r s) (st s))"
by (metis P cond_match cond_true pred_eq snd_whileLoop_first_step)
next
fix r s i r' s'
assume P: "P r s"
assume cond_true: "C r s"
assume conc_step: "(r', s') \<in> fst (B r s)"
assume conc_fail: "snd (whileLoop C B r' s')"
assume cond_induct: "\<And>i. \<lbrakk> P r' s'; i = xf r' s' \<rbrakk> \<Longrightarrow> snd (whileLoop C' A (xf r' s') (st s'))"
assume pred_eq: "i = xf r s"
show "snd (whileLoop C' A (xf r s) (st s))"
proof (rule ccontr)
assume abs_no_fail: "\<not> snd (whileLoop C' A (xf r s) (st s))"
(* As the abstract doesn't fail, it must refine. *)
have abs_step: "(xf r' s', st s') \<in> fst (A (xf r s) (st s))"
apply (rule corresXF_simple_exec [OF body_corres conc_step _ ])
apply (rule snd_whileLoop_first_step [OF abs_no_fail])
apply (metis cond_true cond_match P)
apply (clarsimp simp: P pred_imply)
done
(* The intermediate step fulfills the precondition. *)
have P_step: "P r' s'"
apply (rule use_valid [OF conc_step pred_inv])
apply (metis cond_true P pred_eq abs_no_fail)
done
(* Inductive condition is true. *)
have abs_induct: "snd (whileLoop C' A (xf r' s') (st s'))"
by (metis P_step cond_induct)
show False
by (metis (full_types) P abs_induct abs_no_fail abs_step cond_match cond_true pred_eq snd_whileLoop_unfold)
qed
qed
}
thus "\<not> snd (whileLoop C B x s)"
by (metis no_fail_abs pred_eq')
qed
lemma corresXF_simple_while:
assumes body_corres: "\<And>x y. corresXF_simple st xf (\<lambda>s. P x s \<and> y = xf x s) (A y) (B x)"
and cond_match: "\<And>s r. P r s \<Longrightarrow> C r s = C' (xf r s) (st s)"
and pred_inv: "\<And>r. \<lbrace> \<lambda>s. P r s \<and> C r s \<and> \<not> snd (whileLoop C' A (xf r s) (st s)) \<rbrace> B r \<lbrace> \<lambda>r s. P r s \<rbrace>"
and pred_imply: "\<And>s. P' x s \<Longrightarrow> P x s"
and pred_init: "\<And>s. P' x s \<Longrightarrow> y = xf x s"
shows "corresXF_simple st xf (P' x) (whileLoop C' A y) (whileLoop C B x)"
proof (clarsimp simp: corresXF_simple_def, rule conjI, clarsimp)
fix r s t
assume P: "P' x s"
assume no_fail: "\<not> snd (whileLoop C' A y (st s))"
assume result: "(r, t) \<in> fst (whileLoop C B x s)"
have pred_eq': "y = xf x s"
by (auto intro: pred_init P)
have "\<not> snd (whileLoop C B x s)"
apply (rule corresXF_simple_snd_whileLoop [where B=B and C=C and P=P,
OF body_corres cond_match pred_inv pred_init])
apply (simp | fact)+
done
have "(xf r t, st t) \<in> fst (whileLoop C' A (xf x s) (st s))"
using result pred_imply [OF P] no_fail pred_eq'
proof (induct arbitrary: y rule: in_whileLoop_induct)
(* If the condition is false... *)
fix r r' s
assume neg_cond: "\<not> C r s"
assume P: "P r s"
assume match': "r' = xf r s"
(* The while loop is never executed. *)
have "(whileLoop C' A (xf r s) (st s)) = (return (xf r s) (st s))"
by (metis P cond_match neg_cond match' whileLoop_cond_fail)
(* Thus, we trivally refine. *)
thus "(xf r s, st s) \<in> fst (whileLoop C' A (xf r s) (st s))"
by (metis in_return)
next
(* Otherwise, we hit the inductive case. *)
fix r s r' s' r'' s'' i
assume cond: "C r s"
assume step: "(r', s') \<in> fst (B r s)"
assume rest: "(r'', s'') \<in> fst (whileLoop C B r' s')"
assume abs_induct: "\<And>y. \<lbrakk> P r' s'; \<not> snd (whileLoop C' A y (st s')); y = xf r' s' \<rbrakk>
\<Longrightarrow> (xf r'' s'', st s'') \<in> fst (whileLoop C' A (xf r' s') (st s'))"
assume no_fail: "\<not> snd (whileLoop C' A i (st s))"
assume precond: "P r s"
assume match': "i = xf r s"
(* The abstract condition is also true. *)
have abs_cond: "C' (xf r s) (st s)"
by (metis cond cond_match precond)
(* Abstract step doesn't fail. *)
have abs_no_fail: "\<not> snd (A (xf r s) (st s))"
by (metis abs_cond no_fail snd_whileLoop_first_step match')
(* P is true on the intermediate state. *)
have mid_P: "P r' s'"
apply (insert use_valid [where f="B r", OF step pred_inv])
apply (metis cond no_fail precond match')
done
(* The intermediate abstract state refines. *)
have abs_step: "(xf r' s', st s') \<in> fst (A (xf r s) (st s))"
apply (rule corresXF_simple_exec [OF body_corres])
apply (rule step)
apply (insert snd_whileLoop_first_step [OF no_fail])
apply (metis abs_cond match')
apply (metis precond)
done
(* Further, our assumptions for the abstract inductive case
* are true. *)
have "(xf r'' s'', st s'') \<in> fst (whileLoop C' A (xf r' s') (st s'))"
by (metis abs_cond abs_induct abs_step mid_P no_fail match'
snd_whileLoop_unfold)
(* The intermediate abstract state refines. *)
thus "(xf r'' s'', st s'') \<in> fst (whileLoop C' A (xf r s) (st s))"
apply (subst whileLoop_unroll)
apply (monad_eq simp: abs_cond abs_step)
apply (metis abs_step)
done
qed
thus "(xf r t, st t) \<in> fst (whileLoop C' A y (st s))"
by (metis P pred_init)
next
fix s
assume P: "P' x s"
assume no_fail: "\<not> snd (whileLoop C' A y (st s))"
show "\<not> snd (whileLoop C B x s)"
apply (rule corresXF_simple_snd_whileLoop [OF body_corres])
apply fact+
done
qed
lemma corresXF_simple_weaken_pre:
"\<lbrakk> corresXF_simple st xf P A C; \<And>s. P' s \<Longrightarrow> P s \<rbrakk> \<Longrightarrow> corresXF_simple st xf P' A C"
by (clarsimp simp: corresXF_simple_def)
lemma corresXF_simple_cong:
"\<lbrakk> st = st'; xf = xf'; \<And>s. P s = P' s; \<And>s. P' s \<Longrightarrow> A (st s) = A' (st s); \<And>s. P' s \<Longrightarrow> B s = B' s \<rbrakk>
\<Longrightarrow> corresXF_simple st xf P A B = corresXF_simple st xf P' A' B'"
by (auto simp: corresXF_simple_def)
lemma corresXF_while:
assumes body_corres: "\<And>x y. corresXF st ret ex (\<lambda>s. P x s \<and> y = ret x s) (\<lambda>s. A y s) (B x)"
and cond_match: "\<And>s r. P r s \<Longrightarrow> C r s = C' (ret r s) (st s)"
and pred_inv: "\<And>r. \<lbrace> \<lambda>s. P r s \<and> C r s \<and> \<not> snd (whileLoopE C' A (ret r s) (st s)) \<rbrace>
B r \<lbrace> \<lambda>r s. P r s \<rbrace>,\<lbrace> \<lambda>_ _. True \<rbrace>"
and init_match: "\<And>s. P' x s \<Longrightarrow> y = ret x s"
and pred_imply: "\<And>s. P' x s \<Longrightarrow> P x s"
shows "corresXF st ret ex (P' x) (whileLoopE C' A y) (whileLoopE C B x)"
apply (subst corresXF_simple_corresXF[symmetric])
apply (clarsimp simp: whileLoopE_def)
apply (rule corresXF_simple_weaken_pre)
apply (rule corresXF_simple_while [where
P ="\<lambda>x s. (case x of Inl _ \<Rightarrow> True| Inr v \<Rightarrow> P v s)"
and P'="\<lambda>x s. P' (theRight x) s"])
apply (insert body_corres)[1]
apply (subst (asm) corresXF_simple_corresXF[symmetric])
apply atomize
apply (erule_tac x="theRight x" in allE)
apply (clarsimp simp: corresXF_simple_def NonDetMonad.lift_def
throwError_def return_def split: sum.splits)
apply (clarsimp simp: cond_match split: sum.splits)
apply (clarsimp simp: lift_def split: sum.splits)
apply (cut_tac pred_inv [unfolded validE_def, simplified lift_def])
apply (erule hoare_chain)
apply (monad_eq simp: NonDetMonad.lift_def whileLoopE_def split: sum.splits)
apply monad_eq
apply (clarsimp simp: pred_imply split: sum.splits)
apply (clarsimp simp: init_match pred_imply)
apply clarsimp
done
lemma corresXF_name_pre:
"\<lbrakk> \<And>s'. corresXF st ret ex (\<lambda>s. P s \<and> s = s') A C \<rbrakk> \<Longrightarrow>
corresXF st ret ex P A C"
by (clarsimp simp: corresXF_def)
lemma corresXF_guarded_while_body:
"corresXF st ret ex P A B \<Longrightarrow>
corresXF st ret ex P
(doE r \<leftarrow> A; _ \<leftarrow> guardE (G r); returnOk r odE) B"
apply (monad_eq simp: corresXF_def guardE_def split_def split: sum.splits)
apply force
done
lemma corresXF_guarded_while:
assumes body_corres: "\<And>x y. corresXF st ret ex (\<lambda>s. P x s \<and> y = ret x s) (\<lambda>s. A y s) (B x)"
and cond_match: "\<And>s r. \<lbrakk> P r s; G (ret r s) (st s) \<rbrakk> \<Longrightarrow> C r s = C' (ret r s) (st s)"
and pred_inv: "\<And>r. \<lbrace> \<lambda>s. P r s \<and> C r s \<and> \<not> snd (whileLoopE C' A (ret r s) (st s)) \<and> G (ret r s) (st s) \<rbrace>
B r \<lbrace> \<lambda>r s. G (ret r s) (st s) \<longrightarrow> P r s \<rbrace>,\<lbrace> \<lambda>_ _. True \<rbrace>"
and pred_imply: "\<And>s. \<lbrakk> G y (st s); P' x s \<rbrakk> \<Longrightarrow> P x s"
and init_match: "\<And>s. \<lbrakk> G y (st s); P' x s \<rbrakk> \<Longrightarrow> y = ret x s"
shows "corresXF st ret ex (P' x)
(doE
_ \<leftarrow> guardE (G y);
whileLoopE C' (\<lambda>i. (doE
r \<leftarrow> A i;
_ \<leftarrow> guardE (G r);
returnOk r
odE)) y
odE)
(whileLoopE C B x)"
proof -
have new_body_fails_more:
"\<And>i s. snd (whileLoopE C' A i s) \<Longrightarrow>
snd ((whileLoopE C' (\<lambda>i.
(doE r \<leftarrow> A i;
_ \<leftarrow> guardE (G r);
returnOk r
odE))) i s)"
apply (unfold whileLoopE_def)
apply (erule snd_whileLoop_subset)
apply (monad_eq simp: guardE_def split: sum.splits prod.splits)
apply (case_tac r')
apply clarsimp
apply clarsimp
apply monad_eq
done
note new_body_corres = body_corres [THEN corresXF_guarded_while_body]
show ?thesis
apply (rule corresXF_exec_abs_guard)
apply (rule corresXF_name_pre)
apply (rule corresXF_assume_pre)
apply clarsimp
apply (rule corresXF_guard_imp)
apply (rule_tac P'="\<lambda>x s. P' x s \<and> s = s'" in corresXF_while [
where P="\<lambda>x s. P x s \<and> G (ret x s) (st s)"])
apply (rule corresXF_guard_imp)
apply (rule new_body_corres)
apply (clarsimp)
apply (clarsimp)
apply (rule cond_match, simp, simp)
apply (cut_tac r=r in pred_inv)
apply (clarsimp simp: validE_def2 split: sum.splits)
apply (erule_tac x=s in allE)
apply clarsimp
apply (frule snd_whileLoopE_first_step)
apply (clarsimp simp: cond_match)
apply (subgoal_tac "\<not> snd (A (ret r s) (st s))")
apply (frule (1) corresXF_exec_normal [OF new_body_corres])
apply (clarsimp)
apply (erule impE)
apply (erule contrapos_nn)
apply (erule new_body_fails_more)
apply (erule (1) my_BallE)
apply clarsimp
apply (monad_eq simp: cond_match guardE_def split_def split: sum.splits)
apply (drule snd_whileLoopE_first_step)
apply (clarsimp simp: cond_match)
apply monad_eq
apply clarsimp
apply (metis init_match)
apply (clarsimp simp: init_match)
apply (metis init_match pred_imply)
apply (clarsimp simp: pred_imply)
done
qed
(* Merge of lemmas ccorresE and corresXF. *)
definition "ccorres st \<Gamma> rx G \<equiv>
\<lambda>A B. \<forall>s. (G s \<and> \<not> snd (A (st s))) \<longrightarrow>
(\<forall>t. \<Gamma> \<turnstile> \<langle>B, Normal s\<rangle> \<Rightarrow> t \<longrightarrow>
(\<exists>s'. t = Normal s' \<and> (Inr (rx s'), st s') \<in> fst (A (st s))))
\<and> \<Gamma> \<turnstile> B \<down> Normal s"
(* We can merge ccorresE and corresXF to form a ccorresXF statement. *)
lemma ccorresE_corresXF_merge:
"\<lbrakk> ccorresE st1 \<Gamma> \<top> G1 M B;
corresXF st2 rx ex G2 A M;
no_throw \<top> A;
\<And>s. st s = st2 (st1 s);
\<And>r s. rx' s = rx r (st1 s);
\<And>s. G s \<longrightarrow> (s \<in> G1 \<and> G2 (st1 s)) \<rbrakk> \<Longrightarrow>
ccorres st \<Gamma> rx' G A B"
apply (unfold ccorres_def)
apply clarsimp
apply (clarsimp simp: ccorresE_def)
apply (clarsimp simp: corresXF_def)
apply (erule allE, erule impE, force)
apply (erule allE, erule impE, force)
apply clarsimp
apply (erule allE, erule impE, force)
apply (case_tac t)
apply clarsimp
apply (erule (1) my_BallE)
apply (clarsimp split: sum.splits)
apply clarsimp
apply (erule (1) my_BallE)
apply (clarsimp split: sum.splits)
apply (drule no_throw_Inr, assumption)
apply simp
apply (clarsimp split: sum.splits)
apply clarsimp
apply simp
done
(* We can also merge corresXF statements. *)
lemma corresXF_corresXF_merge:
"\<lbrakk> corresXF st rx ex P A B; corresXF st' rx' ex' P' B C \<rbrakk> \<Longrightarrow>
corresXF (st o st') (\<lambda>rv s. rx (rx' rv s) (st' s))
(\<lambda>rv s. ex (ex' rv s) (st' s)) (\<lambda>s. P' s \<and> P (st' s)) A C "
apply (clarsimp simp: corresXF_def split: sum.splits)
apply force
done
lemma ccorres_guard_imp:
"\<lbrakk> ccorres st G rx P A C; \<And>s. P' s \<Longrightarrow> P s \<rbrakk> \<Longrightarrow> ccorres st G rx P' A C"
apply atomize
apply (clarsimp simp: ccorres_def)
done
lemma hoarep_from_ccorres:
"\<lbrakk> ccorres st G rx P' A C; \<lbrace> \<lambda>s. P s \<rbrace> A \<lbrace> \<lambda>rv s. Q rv s \<rbrace>, \<lbrace> \<lambda>rv s. True \<rbrace>!; \<And>s. P (st s) \<Longrightarrow> P' s \<rbrakk>
\<Longrightarrow> hoarep G \<Theta> F {s. P (st s) } C {s. Q (rx s) (st s) } E"
apply (clarsimp simp: ccorres_def)
apply (rule hoare_complete')
apply (rule allI)
apply (rule cnvalidI)
apply (drule execn_to_exec)
apply clarsimp
apply (erule_tac x=s in allE)
apply (erule impE)
apply (rule conjI)
apply simp
apply (clarsimp simp add: validE_NF_alt_def)
apply (metis validNF_no_fail no_failD)
apply clarsimp
apply (erule allE, erule (1) impE)
apply clarsimp
apply (drule validE_NF_valid)
apply (rule imageI)
apply (rule CollectI)
apply (clarsimp simp: validE_def valid_def)
apply force
done
lemma hoaret_from_ccorres:
"\<lbrakk> ccorres st G rx P' A C; \<lbrace> \<lambda>s. P s \<rbrace> A \<lbrace> \<lambda>rv s. Q rv s \<rbrace>, \<lbrace> \<lambda>rv s. True \<rbrace>!; \<And>s. P (st s) \<Longrightarrow> P' s \<rbrakk>
\<Longrightarrow> hoaret G \<Theta> F {s. P (st s) } C {s. Q (rx s) (st s) } E"
apply (rule TerminationPartial)
apply (erule (1) hoarep_from_ccorres, simp)
apply (clarsimp simp: ccorres_def validE_NF_def validNF_def no_fail_def)
done
(*
* Rules to use the corresXF definitions.
*)
lemma corresXF_modify_local:
"\<lbrakk> \<And>s. st s = st (M s); \<And>s. P s \<Longrightarrow> ret () (M s) = x \<rbrakk>
\<Longrightarrow> corresXF st ret ex P (returnOk x) (modifyE M)"
apply (monad_eq simp: corresXF_def modifyE_def Ball_def split: sum.splits)
done
lemma corresXF_modify_global:
"\<lbrakk> \<And>s. P s \<Longrightarrow> M (st s) = st (M' s) \<rbrakk> \<Longrightarrow>
corresXF st ret ex P (modifyE M) (modifyE M')"
apply (monad_eq simp: corresXF_def modifyE_def Ball_def split: sum.splits)
done
lemma corresXF_select_modify:
"\<lbrakk> \<And>s. P s \<Longrightarrow> st s = st (M s); \<And>s. P s \<Longrightarrow> ret () (M s) \<in> x \<rbrakk> \<Longrightarrow>
corresXF st ret ex P (selectE x) (modifyE M)"
apply (monad_eq simp: corresXF_def modifyE_def selectE_def Ball_def split: sum.splits)
done
lemma corresXF_select_select:
"\<lbrakk> \<And>s a. st s = st (M (a::('a \<Rightarrow> ('a::{type}))) s);
\<And>s x. \<lbrakk> P s; x \<in> b\<rbrakk> \<Longrightarrow> ret x s \<in> a \<rbrakk> \<Longrightarrow>
corresXF st ret ex P (selectE a) (selectE b)"
apply (monad_eq simp: corresXF_def selectE_def Ball_def split: sum.splits)
done
lemma corresXF_modify_gets:
"\<lbrakk> \<And>s. P s \<Longrightarrow> st s = st (M s); \<And>s. P s \<Longrightarrow> ret () (M s) = f (st (M s)) \<rbrakk> \<Longrightarrow>
corresXF st ret ex P (getsE f) (modifyE M)"
apply (monad_eq simp: corresXF_def getsE_def modifyE_def Ball_def split: sum.splits)
done
lemma corresXF_guard:
"\<lbrakk> \<And>s. P s \<Longrightarrow> G' s = G (st s) \<rbrakk> \<Longrightarrow> corresXF st ret ex P (guardE G) (guardE G')"
apply (monad_eq simp: corresXF_def guardE_def Ball_def split: sum.splits)
done
lemma corresXF_fail:
"corresXF st return_xf exception_xf P fail X"
apply (monad_eq simp: corresXF_def split: sum.splits)
done
lemma corresXF_spec:
"\<lbrakk> \<And>s s'. ((s, s') \<in> A') = ((st s, st s') \<in> A); surj st \<rbrakk>
\<Longrightarrow> corresXF st ret ex P (specE A) (specE A')"
apply (monad_eq simp: corresXF_def specE_def spec_def Ball_def split: sum.splits)
apply (frule_tac y=s' in surjD)
apply (clarsimp simp: image_def set_eq_UNIV)
apply metis
done
lemma globals_surj [simp]: "surj globals"
apply (rule surjI [where f="\<lambda>x. undefined\<lparr> globals := x\<rparr>"])
apply simp
done
lemma corresXF_throw:
"\<lbrakk> \<And>s. P s \<Longrightarrow> E B s = A \<rbrakk> \<Longrightarrow> corresXF st V E P (throwError A) (throwError B)"
apply (monad_eq simp: corresXF_def split: sum.splits)
done
lemma corresXF_simple_append_gets_abs:
assumes corres: "corresXF_simple st ret P L R"
and consistent: "\<lbrace>P\<rbrace> R \<lbrace>\<lambda>r s. M (ret r s) (st s) = ret' r s\<rbrace>"
shows "corresXF_simple st ret' P (L >>= (\<lambda>r. gets (M r))) R"
(is "corresXF_simple st ret' P ?lhs R")
proof (clarsimp simp: corresXF_simple_def, rule conjI)
fix s
assume P: "P s"
assume no_fail: "\<not> snd (?lhs (st s))"
show "\<forall>(r', t') \<in> fst (R s). (ret' r' t', st t') \<in> fst (?lhs (st s))"
using no_fail
apply monad_eq
apply (metis P use_valid [OF _ consistent]
corresXF_simple_exec [OF corres, where s=s])
done
next
fix s
assume P: "P s"
assume no_fail: "\<not> snd (?lhs (st s))"
have "\<not> snd (L (st s))"
by (metis no_fail not_snd_bindI1)
thus "\<not> snd (R s)"
by (metis P corres corresXF_simple_fail)
qed
lemma bindE_to_getsE_simp:
"(L >>=E (\<lambda>x. getsE (F x))) = (L >>= (\<lambda>x. gets (\<lambda>s. case x of Inl a \<Rightarrow> Inl a | Inr b \<Rightarrow> Inr (F b s))))"
apply (rule ext)+
apply (monad_eq simp: bindE_def in_bind_split Bex_def getsE_def in_lift split: sum.splits)
apply blast
done
lemma corresXF_append_gets_abs:
assumes corres: "corresXF st ret ex P L R"
and consistent: "\<lbrace>P\<rbrace> R \<lbrace>\<lambda>r s. M (ret r s) (st s) = ret' r s \<rbrace>, \<lbrace> \<lambda>_. \<top> \<rbrace>"
shows "corresXF st ret' ex P (L >>=E (\<lambda>r. getsE (M r))) R"
apply (insert corres consistent)
apply (clarsimp simp: corresXF_simple_corresXF[symmetric] bindE_to_getsE_simp)
apply (erule corresXF_simple_append_gets_abs)
apply (clarsimp simp: validE_def valid_def split: sum.splits)
done
lemma corresXF_skipE:
"corresXF st ret ex P skipE skipE"
apply (monad_eq simp: corresXF_def skipE_def)
done
lemma corresXF_id:
"corresXF id (\<lambda>r s. r) (\<lambda>r s. r) P M M"
by (fastforce simp: corresXF_def split: sum.splits)
lemma corresXF_cong:
"\<lbrakk> \<And>s. st s = st' s;
\<And>s r. ret_xf r s = ret_xf' r s;
\<And>s r. ex_xf r s = ex_xf' r s;
\<And>s. P s = P' s;
\<And>s s'. P' s' \<Longrightarrow> A s = A' s;
\<And>s. P' s \<Longrightarrow> C s = C' s \<rbrakk> \<Longrightarrow>
corresXF st ret_xf ex_xf P A C = corresXF st' ret_xf' ex_xf' P' A' C'"
apply atomize
apply (clarsimp simp: corresXF_def split: sum.splits)
apply (case_tac "Ex P")
apply presburger
apply force
done
lemma corresXF_exec_abs_select:
"\<lbrakk> x \<in> Q; x \<in> Q \<Longrightarrow> corresXF id rx ex P (A x) A' \<rbrakk> \<Longrightarrow> corresXF id rx ex P (selectE Q >>=E A) A'"
apply (clarsimp simp: corresXF_def)
apply (erule_tac x=s in allE)
apply (erule impE)
apply (monad_eq simp: selectE_def Ball_def split: sum.splits)
apply blast
apply clarsimp
apply (monad_eq simp: selectE_def Ball_def split: sum.splits)
apply blast
done
end