-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExceptionRewrite.thy
367 lines (297 loc) · 14.1 KB
/
ExceptionRewrite.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
theory ExceptionRewrite
imports L1Defs L1Peephole
begin
(* The given block of code always fails. *)
definition "always_fail P A \<equiv> \<forall>s. P s \<longrightarrow> (A s = ({}, True))"
lemma always_fail_fail [simp]: "always_fail P fail"
by (clarsimp simp: always_fail_def fail_def)
lemma no_return_throwError [simp]: "no_return P (throwError x)"
apply (clarsimp simp: no_return_def)
apply wp
done
lemma bindE_alwaysfail_lhs: "\<lbrakk> always_fail \<top> L \<rbrakk> \<Longrightarrow> always_fail \<top> (L >>=E R)"
apply (clarsimp simp: always_fail_def bindE_def bind_def throwError_def)
done
lemma bindE_alwaysfail_rhs: "\<lbrakk> empty_fail L; no_throw \<top> L; \<And>x. always_fail \<top> (R x) \<rbrakk> \<Longrightarrow> always_fail \<top> (L >>=E R)"
apply atomize
apply (clarsimp simp: always_fail_def no_throw_def)
apply (clarsimp simp: bindE_def lift_def bind_def split_def)
apply (clarsimp simp: empty_fail_def validE_def valid_def)
apply (erule_tac x=s in allE)+
apply (clarsimp simp: throwError_def return_def split_def split: sum.splits)
apply (clarsimp simp: ex_in_conv [symmetric])
done
lemma handleE'_alwaysfail_lhs: "\<lbrakk> always_fail \<top> L \<rbrakk> \<Longrightarrow> always_fail \<top> (L <handle2> R)"
apply (clarsimp simp: handleE'_def always_fail_def bind_def)
done
lemma handleE'_alwaysfail_rhs: "\<lbrakk> empty_fail L; no_return \<top> L; \<And>r. always_fail \<top> (R r) \<rbrakk> \<Longrightarrow> always_fail \<top> (L <handle2> R)"
apply atomize
apply (clarsimp simp: always_fail_def no_return_def)
apply (clarsimp simp: handleE'_def lift_def bind_def split_def)
apply (clarsimp simp: empty_fail_def validE_def valid_def)
apply (erule_tac x=s in allE)+
apply (clarsimp simp: throwError_def return_def split_def image_constant split: sum.splits)
apply (clarsimp simp: ex_in_conv [symmetric])
done
lemma handleE_alwaysfail_lhs: "\<lbrakk> always_fail \<top> L \<rbrakk> \<Longrightarrow> always_fail \<top> (L <handle> R)"
apply (unfold handleE_def)
apply (rule handleE'_alwaysfail_lhs, auto)
done
lemma handleE_alwaysfail_rhs: "\<lbrakk> empty_fail L; no_return \<top> L; \<And>r. always_fail \<top> (R r) \<rbrakk> \<Longrightarrow> always_fail \<top> (L <handle> R)"
apply (unfold handleE_def)
apply (rule handleE'_alwaysfail_rhs, auto)
done
lemma alwaysfail_noreturn: "always_fail P A \<Longrightarrow> no_return P A"
by (clarsimp simp: always_fail_def no_return_def validE_def valid_def split: sum.splits)
lemma alwaysfail_nothrow: "always_fail P A \<Longrightarrow> no_throw P A"
by (clarsimp simp: always_fail_def no_throw_def validE_def valid_def split: sum.splits)
lemma empty_fail_handleE: "\<lbrakk> empty_fail L; \<And>r. empty_fail (R r) \<rbrakk> \<Longrightarrow> empty_fail (L <handle> R)"
apply (clarsimp simp: handleE_def handleE'_def)
apply (erule empty_fail_bind)
apply (clarsimp simp: empty_fail_error_bits split: sum.splits)
done
lemma no_return_bindE:
"no_return (\<lambda>_. True) A \<Longrightarrow> (A >>=E B) = A"
apply (rule ext)+
apply (rule prod_eqI)
apply (rule set_eqI)
apply (clarsimp simp: in_bindE no_return_def validE_def valid_def)
apply (erule_tac x=x in allE)
apply (rule iffI)
apply (erule disjE)
apply clarsimp
apply clarsimp
apply (erule (1) my_BallE)
apply clarsimp
apply clarsimp
apply (erule (1) my_BallE)
apply (clarsimp split: sum.splits)
apply (clarsimp simp: snd_bindE no_return_def validE_def valid_def)
apply (erule_tac x=x in allE)
apply force
done
(*
* "empty_fail" lemmas
*)
lemma L1_skip_empty_fail [simp,L1except]: "empty_fail L1_skip"
by (clarsimp simp: empty_fail_def L1_defs returnOk_def return_def)
lemma L1_modify_empty_fail [simp,L1except]: "empty_fail (L1_modify m)"
by (clarsimp simp: empty_fail_def L1_defs simpler_modify_def liftE_def2)
lemma L1_guard_empty_fail [simp,L1except]: "empty_fail (L1_guard g)"
by (metis L1_guard_def empty_fail_exception(3) guardE_def)
lemma L1_init_empty_fail [simp,L1except]: "empty_fail (L1_init v)"
apply (clarsimp simp: empty_fail_def L1_defs returnOk_def return_def simpler_modify_def select_def)
apply (clarsimp simp: bind_liftE_distrib [symmetric])
apply (clarsimp simp: bind_def liftE_def return_def)
done
lemma L1_call_empty_fail: "\<lbrakk> empty_fail b \<rbrakk> \<Longrightarrow> empty_fail (L1_call a b c d)"
by (auto intro!: empty_fail_bindE empty_fail_handleE simp: L1_call_def empty_fail_error_bits empty_fail_get)
lemma L1_spec_empty_fail [simp,L1except]: "empty_fail (L1_spec s)"
by (clarsimp simp: empty_fail_def L1_defs returnOk_def return_def liftE_def2 spec_def)
lemma L1_throw_empty_fail [simp,L1except]: "empty_fail L1_throw"
by (clarsimp simp: empty_fail_def L1_defs returnOk_def return_def throwError_def)
lemma L1_fail_empty_fail [simp,L1except]: "empty_fail L1_fail"
by (clarsimp simp: empty_fail_def L1_defs returnOk_def return_def fail_def)
lemma L1_condition_empty_fail: "\<lbrakk> empty_fail L; empty_fail R \<rbrakk> \<Longrightarrow> empty_fail (L1_condition C L R)"
by (clarsimp simp: empty_fail_def L1_defs returnOk_def return_def split: condition_splits)
lemma L1_seq_empty_fail: "\<lbrakk> empty_fail L; empty_fail R \<rbrakk> \<Longrightarrow> empty_fail (L1_seq L R)"
apply (clarsimp simp: L1_defs)
apply (erule (1) empty_fail_bindE)
done
lemma L1_catch_empty_fail: "\<lbrakk> empty_fail L; empty_fail R \<rbrakk> \<Longrightarrow> empty_fail (L1_catch L R)"
apply (clarsimp simp: L1_defs)
apply (erule (1) empty_fail_handleE)
done
lemma L1_while_empty_fail: "empty_fail B \<Longrightarrow> empty_fail (L1_while C B)"
apply (clarsimp simp: L1_while_def)
apply (rule empty_fail_whileLoopE)
apply simp
done
(*
* no_throw lemmas.
*)
lemma L1_skip_nothrow [simp,L1except]: "no_throw \<top> L1_skip"
by (clarsimp simp: L1_defs)
lemma L1_modify_nothrow [simp,L1except]: "no_throw \<top> (L1_modify m)"
by (clarsimp simp: L1_defs)
lemma L1_guard_nothrow [simp,L1except]: "no_throw \<top> (L1_guard g)"
by (clarsimp simp: L1_defs)
lemma L1_call_nothrow [simp,L1except]: "no_throw \<top> (L1_call x y z q)"
apply (clarsimp simp: L1_call_def L1_defs)
apply (subst no_throw_bindE_simple | simp add: no_throw_handleE_simple)+
done
lemma L1_init_nothrow [simp,L1except]: "no_throw \<top> (L1_init a)"
by (rule no_throw_L1_init)
lemma L1_spec_nothrow [simp,L1except]: "no_throw \<top> (L1_spec a)"
by (clarsimp simp: L1_defs)
lemma L1_fail_nothrow [simp,L1except]: "no_throw \<top> L1_fail"
by (clarsimp simp: L1_defs)
lemma L1_while_nothrow: "no_throw \<top> B \<Longrightarrow> no_throw \<top> (L1_while C B)"
apply (clarsimp simp: L1_while_def)
apply (clarsimp simp: no_throw_def)
apply (rule validE_whileLoopE [where I="\<lambda>_ _. True"])
apply simp
apply (erule validE_weaken, simp+)
done
lemma L1_catch_nothrow_lhs: "\<lbrakk> no_throw \<top> L \<rbrakk> \<Longrightarrow> no_throw \<top> (L1_catch L R)"
apply (clarsimp simp: L1_defs no_return_def no_throw_def)
apply (erule handleE_wp [rotated])
apply simp
done
lemma L1_catch_nothrow_rhs: "\<lbrakk> no_throw \<top> R \<rbrakk> \<Longrightarrow> no_throw \<top> (L1_catch L R)"
apply (clarsimp simp: L1_defs no_return_def no_throw_def)
apply (rule handleE_wp, assumption)
apply (rule hoareE_TrueI)
done
lemma L1_seq_nothrow: "\<lbrakk> no_throw \<top> L; no_throw \<top> R \<rbrakk> \<Longrightarrow> no_throw \<top> (L1_seq L R)"
apply (clarsimp simp: L1_defs)
apply (erule (1) no_throw_bindE_simple)
done
lemma L1_condition_nothrow: "\<lbrakk> no_throw \<top> L; no_throw \<top> R \<rbrakk> \<Longrightarrow> no_throw \<top> (L1_condition C L R)"
apply (clarsimp simp: L1_condition_def condition_def)
apply (clarsimp simp: no_throw_def)
apply (clarsimp simp: valid_def validE_def)
done
(*
* no_return lemmas
*)
lemma L1_throw_noreturn [simp,L1except]: "no_return \<top> L1_throw"
apply (clarsimp simp: L1_defs no_return_def)
apply wp
done
lemma L1_fail_noreturn [simp,L1except]: "no_return \<top> L1_fail"
apply (clarsimp simp: L1_defs no_return_def)
done
lemma L1_seq_noreturn_lhs: "no_return \<top> L \<Longrightarrow> no_return \<top> (L1_seq L R)"
apply (clarsimp simp: L1_defs no_return_def)
apply wp
apply clarsimp
done
lemma L1_seq_noreturn_rhs: "\<lbrakk> no_return \<top> R \<rbrakk> \<Longrightarrow> no_return \<top> (L1_seq L R)"
apply (clarsimp simp: L1_defs no_return_def no_throw_def)
apply (rule seqE [where B="\<lambda>_ _. True"])
apply (rule hoareE_TrueI)
apply simp
done
lemma L1_catch_noreturn: "\<lbrakk> no_return \<top> L; no_return \<top> R \<rbrakk> \<Longrightarrow> no_return \<top> (L1_catch L R)"
apply (clarsimp simp: L1_defs)
apply (clarsimp simp: no_return_def)
apply (rule handleE_wp, assumption)
apply simp
done
lemma L1_condition_noreturn: "\<lbrakk> no_return \<top> L; no_return \<top> R \<rbrakk> \<Longrightarrow> no_return \<top> (L1_condition C L R)"
by (clarsimp simp: L1_defs no_return_def validE_def valid_def split: condition_splits)
(*
* always_fail lemmas
*)
lemma L1_fail_alwaysfail [simp,L1except]: "always_fail \<top> L1_fail"
by (clarsimp simp: L1_defs)
lemma L1_seq_alwaysfail_lhs: "\<lbrakk> always_fail \<top> L \<rbrakk> \<Longrightarrow> always_fail \<top> (L1_seq L R)"
by (auto intro!: bindE_alwaysfail_lhs simp: L1_defs)
lemma L1_seq_alwaysfail_rhs: "\<lbrakk> empty_fail L; no_throw \<top> L; always_fail \<top> R \<rbrakk> \<Longrightarrow> always_fail \<top> (L1_seq L R)"
by (auto intro!: bindE_alwaysfail_rhs simp: L1_defs)
lemma L1_catch_alwaysfail_lhs: "\<lbrakk> always_fail \<top> L \<rbrakk> \<Longrightarrow> always_fail \<top> (L1_catch L R)"
by (auto intro!: handleE_alwaysfail_lhs simp: L1_defs)
lemma L1_catch_alwaysfail_rhs: "\<lbrakk> empty_fail L; no_return \<top> L; always_fail \<top> R \<rbrakk> \<Longrightarrow> always_fail \<top> (L1_catch L R)"
by (auto intro!: handleE_alwaysfail_rhs simp: L1_defs)
lemma L1_condition_alwaysfail: "\<lbrakk> always_fail \<top> L; always_fail \<top> R \<rbrakk> \<Longrightarrow> always_fail \<top> (L1_condition C L R)"
by (clarsimp simp: L1_defs always_fail_def split: condition_splits)
(*
* Rewrite rules.
*)
lemma L1_catch_nothrow [L1except]:
"no_throw \<top> A \<Longrightarrow> L1_catch A E = A"
by (metis L1_catch_def no_throw_handleE)
lemma L1_seq_noreturn [L1except]:
"no_return \<top> A \<Longrightarrow> L1_seq A B = A"
apply (clarsimp simp: L1_defs)
apply (metis no_return_bindE)
done
lemma L1_catch_throw [L1except]:
"L1_catch L1_throw E = E"
apply (clarsimp simp: L1_defs)
apply (clarsimp simp: throwError_def handleE_def handleE'_def)
done
lemma anything_to_L1_fail [L1except]:
"always_fail \<top> A \<Longrightarrow> A = L1_fail"
apply (clarsimp simp: always_fail_def L1_fail_def fail_def)
apply (rule ext)
apply force
done
(*
lemma L1_seq_fail [L1except]:
"\<lbrakk> empty_fail L; no_throw \<top> L; always_fail \<top> R \<rbrakk> \<Longrightarrow> L1_seq L R = L1_fail"
apply (subst (2) anything_to_L1_fail)
apply (rule L1_seq_alwaysfail_rhs)
apply auto
done
*)
lemma L1_catch_L1_seq_nothrow [L1except]:
"\<lbrakk> no_throw \<top> A \<rbrakk> \<Longrightarrow> L1_catch (L1_seq A B) C = L1_seq A (L1_catch B C)"
apply (unfold L1_defs)
apply (subst bindE_handleE_join [symmetric])
apply simp
apply simp
done
lemma L1_catch_simple_seq [L1except]:
"L1_catch (L1_seq L1_skip B) E = (L1_seq L1_skip (L1_catch B E))"
"L1_catch (L1_seq L1_fail B) E = (L1_seq L1_fail (L1_catch B E))"
"L1_catch (L1_seq (L1_modify m) B) E = (L1_seq (L1_modify m) (L1_catch B E))"
"L1_catch (L1_seq (L1_spec s) B) E = (L1_seq (L1_spec s) (L1_catch B E))"
"L1_catch (L1_seq (L1_guard g) B) E = (L1_seq (L1_guard g) (L1_catch B E))"
"L1_catch (L1_seq (L1_init i) B) E = (L1_seq (L1_init i) (L1_catch B E))"
"L1_catch (L1_seq (L1_call a b c d) B) E = (L1_seq (L1_call a b c d) (L1_catch B E))"
apply (subst L1_catch_seq_join | clarsimp simp: L1_defs L1_call_nothrow | rule no_throw_bindE_simple)+
done
lemma L1_catch_single [L1except]:
"L1_catch (L1_skip) E = L1_skip"
"L1_catch (L1_fail) E = L1_fail"
"L1_catch (L1_modify m) E = L1_modify m"
"L1_catch (L1_spec s) E = L1_spec s"
"L1_catch (L1_guard g) E = L1_guard g"
"L1_catch (L1_init i) E = L1_init i"
"L1_catch (L1_call a b c d) E = L1_call a b c d"
apply (subst L1_catch_nothrow | clarsimp simp: L1_defs L1_call_nothrow | rule no_throw_bindE_simple)+
done
lemma L1_catch_single_while [L1except]:
"\<lbrakk> no_throw \<top> B \<rbrakk> \<Longrightarrow> L1_catch (L1_while C B) E = L1_while C B"
by (metis L1_catch_def L1_while_nothrow handleE_def no_throw_handleE')
lemma L1_catch_seq_while [L1except]:
"\<lbrakk> no_throw \<top> B \<rbrakk> \<Longrightarrow> L1_catch (L1_seq (L1_while C B) X) E = L1_seq (L1_while C B) (L1_catch X E)"
apply (rule L1_catch_seq_join [symmetric])
apply (clarsimp simp: L1_defs)
apply (rule whileLoopE_nothrow)
apply simp
done
lemma L1_catch_single_cond [L1except]:
"L1_catch (L1_condition C L R) E = L1_condition C (L1_catch L E) (L1_catch R E)"
apply (rule ext)+
apply (monad_eq simp: L1_defs Bex_def Ball_def)
apply blast
done
(* Exponential: can only apply in certain circumstances. *)
lemma L1_catch_cond_seq:
"L1_catch (L1_seq (L1_condition C L R) B) E = L1_condition C (L1_catch (L1_seq L B) E) (L1_catch (L1_seq R B) E)"
apply (subst L1_condition_distrib)
apply (rule L1_catch_single_cond)
done
(* This exciting lemma lets up break up a L1_catch into two parts in
* the exciting circumstance that "E" never returns. *)
lemma L1_catch_seq_cond_noreturn_ex:
"\<lbrakk> no_return \<top> E \<rbrakk> \<Longrightarrow> (L1_catch (L1_seq (L1_condition c A B) C) E) = (L1_seq (L1_catch (L1_condition c A B) E) (L1_catch C E))"
apply (clarsimp simp: L1_defs)
apply (monad_eq simp: no_return_def valid_def validE_def Ball_def
Bex_def unit_Inl_or_Inr split:sum.splits)
apply (safe, (metis Inr_not_Inl)+)
done
lemmas L1_catch_seq_cond_nothrow = L1_catch_L1_seq_nothrow [OF L1_condition_nothrow]
end