forked from facebookresearch/generative-recommenders
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
478 lines (416 loc) · 18.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Main entry point for model training. Please refer to README.md for usage instructions.
"""
from typing import Optional
import logging
import random
from datetime import date
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' # Hide excessive tensorflow debug messages
import sys
import time
import gin
import fbgemm_gpu # noqa: F401, E402
from absl import app, flags
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from data.reco_dataset import get_reco_dataset
from data.eval import _avg, get_eval_state, eval_metrics_v2_from_tensors, add_to_summary_writer
from indexing.utils import get_top_k_module
from modeling.sequential.autoregressive_losses import InBatchNegativesSampler, LocalNegativesSampler, SampledSoftmaxLoss, BCELoss
from modeling.sequential.encoder_utils import get_sequential_encoder
from modeling.sequential.embedding_modules import EmbeddingModule, LocalEmbeddingModule
from modeling.sequential.input_features_preprocessors import LearnablePositionalEmbeddingInputFeaturesPreprocessor
from modeling.sequential.output_postprocessors import L2NormEmbeddingPostprocessor, LayerNormEmbeddingPostprocessor
from modeling.sequential.features import movielens_seq_features_from_row
from modeling.similarity_utils import get_similarity_function
from trainer.data_loader import create_data_loader
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
flags.DEFINE_string("gin_config_file", None, "Path to the config file.")
flags.DEFINE_integer("master_port", 12355, "Master port.")
FLAGS = flags.FLAGS
def setup(rank: int, world_size: int, master_port: int) -> None:
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(master_port)
# initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
@gin.configurable
def train_fn(
rank: int,
world_size: int,
master_port: int,
dataset_name: str = "ml-20m",
max_sequence_length: int = 200,
positional_sampling_ratio: float = 1.0,
local_batch_size: int = 128,
eval_batch_size: int = 128,
eval_user_max_batch_size: Optional[int] = None,
main_module: str = "SASRec",
main_module_bf16: bool = False,
dropout_rate: float = 0.2,
user_embedding_norm: str = "l2_norm",
sampling_strategy: str = "in-batch",
loss_module: str = "SampledSoftmaxLoss",
num_negatives: int = 1,
loss_activation_checkpoint: bool = False,
item_l2_norm: bool = False,
temperature: float = 0.05,
num_epochs: int = 101,
learning_rate: float = 1e-3,
num_warmup_steps: int = 0,
weight_decay: float = 1e-3,
top_k_method: str = "MIPSBruteForceTopK",
eval_interval: int = 100,
full_eval_every_n: int = 1,
save_ckpt_every_n: int = 1000,
partial_eval_num_iters: int = 32,
embedding_module_type: str = "local",
item_embedding_dim: int = 240,
interaction_module_type: str = "",
gr_output_length: int = 10,
l2_norm_eps: float = 1e-6,
enable_tf32: bool = False,
random_seed: int = 42,
) -> None:
# to enable more deterministic results.
random.seed(random_seed)
torch.backends.cuda.matmul.allow_tf32 = enable_tf32
torch.backends.cudnn.allow_tf32 = enable_tf32
logging.info(f"cuda.matmul.allow_tf32: {enable_tf32}")
logging.info(f"cudnn.allow_tf32: {enable_tf32}")
logging.info(f"Training model on rank {rank}.")
setup(rank, world_size, master_port)
dataset = get_reco_dataset(
dataset_name=dataset_name,
max_sequence_length=max_sequence_length,
chronological=True,
positional_sampling_ratio=positional_sampling_ratio,
)
train_data_sampler, train_data_loader = create_data_loader(
dataset.train_dataset,
batch_size=local_batch_size,
world_size=world_size,
rank=rank,
shuffle=True,
drop_last=world_size > 1,
)
eval_data_sampler, eval_data_loader = create_data_loader(
dataset.eval_dataset,
batch_size=eval_batch_size,
world_size=world_size,
rank=rank,
shuffle=True, # needed for partial eval
drop_last=world_size > 1,
)
model_debug_str = main_module
if embedding_module_type == "local":
embedding_module: EmbeddingModule = LocalEmbeddingModule(
num_items=dataset.max_item_id,
item_embedding_dim=item_embedding_dim,
)
else:
raise ValueError(f"Unknown embedding_module_type {embedding_module_type}")
model_debug_str += f"-{embedding_module.debug_str()}"
interaction_module, interaction_module_debug_str = get_similarity_function(
module_type=interaction_module_type,
query_embedding_dim=item_embedding_dim,
item_embedding_dim=item_embedding_dim,
)
assert user_embedding_norm == "l2_norm" or user_embedding_norm == "layer_norm", \
f"Not implemented for {user_embedding_norm}"
output_postproc_module = (
L2NormEmbeddingPostprocessor(
embedding_dim=item_embedding_dim,
eps=1e-6,
) if user_embedding_norm == "l2_norm" else LayerNormEmbeddingPostprocessor(
embedding_dim=item_embedding_dim,
eps=1e-6,
)
)
input_preproc_module = LearnablePositionalEmbeddingInputFeaturesPreprocessor(
max_sequence_len=dataset.max_sequence_length + gr_output_length + 1,
embedding_dim=item_embedding_dim,
dropout_rate=dropout_rate,
)
model = get_sequential_encoder(
module_type=main_module,
max_sequence_length=dataset.max_sequence_length,
max_output_length=gr_output_length + 1,
embedding_module=embedding_module,
interaction_module=interaction_module,
input_preproc_module=input_preproc_module,
output_postproc_module=output_postproc_module,
verbose=True,
)
model_debug_str = model.debug_str()
# loss
loss_debug_str = loss_module
if loss_module == "BCELoss":
loss_debug_str = loss_debug_str[:-4]
assert temperature == 1.0
ar_loss = BCELoss(temperature=temperature, model=model)
elif loss_module == "SampledSoftmaxLoss":
loss_debug_str = "ssl"
if temperature != 1.0:
loss_debug_str += f"-t{temperature}"
ar_loss = SampledSoftmaxLoss(
num_to_sample=num_negatives,
softmax_temperature=temperature,
model=model,
activation_checkpoint=loss_activation_checkpoint,
)
loss_debug_str += f"-n{num_negatives}{'-ac' if loss_activation_checkpoint else ''}"
else:
raise ValueError(f"Unrecognized loss module {loss_module}.")
# sampling
if sampling_strategy == "in-batch":
negatives_sampler = InBatchNegativesSampler(
l2_norm=item_l2_norm,
l2_norm_eps=l2_norm_eps,
dedup_embeddings=True,
)
sampling_debug_str = f"in-batch{f'-l2-eps{l2_norm_eps}' if item_l2_norm else ''}-dedup"
elif sampling_strategy == "local":
negatives_sampler = LocalNegativesSampler(
num_items=dataset.max_item_id,
item_emb=model._embedding_module._item_emb,
all_item_ids=dataset.all_item_ids,
l2_norm=item_l2_norm,
l2_norm_eps=l2_norm_eps,
)
else:
raise ValueError(f"Unrecognized sampling strategy {sampling_strategy}.")
sampling_debug_str = negatives_sampler.debug_str()
# Creates model and moves it to GPU with id rank
device = rank
if main_module_bf16:
model = model.to(torch.bfloat16)
model = model.to(device)
ar_loss = ar_loss.to(device)
negatives_sampler = negatives_sampler.to(device)
model = DDP(model, device_ids=[rank], broadcast_buffers=False)
# TODO: wrap in create_optimizer.
opt = torch.optim.AdamW(model.parameters(), lr=learning_rate, betas=(0.9, 0.98), weight_decay=weight_decay)
date_str = date.today().strftime("%Y-%m-%d")
model_subfolder = f"{dataset_name}-l{max_sequence_length}"
model_desc = (
f"{model_subfolder}" +
f"/{model_debug_str}_{interaction_module_debug_str}_{sampling_debug_str}_{loss_debug_str}" +
f"{f'-ddp{world_size}' if world_size > 1 else ''}-b{local_batch_size}-lr{learning_rate}-wu{num_warmup_steps}-wd{weight_decay}{'' if enable_tf32 else '-notf32'}-{date_str}"
)
if full_eval_every_n > 1:
model_desc += f"-fe{full_eval_every_n}"
if positional_sampling_ratio is not None and positional_sampling_ratio < 1:
model_desc += f"-d{positional_sampling_ratio}"
# creates subfolders.
os.makedirs(f"./exps/{model_subfolder}", exist_ok=True)
os.makedirs(f"./ckpts/{model_subfolder}", exist_ok=True)
log_dir = f"./exps/{model_desc}"
if rank == 0:
writer = SummaryWriter(log_dir=log_dir)
logging.info(f"Rank {rank}: writing logs to {log_dir}")
else:
writer = None
logging.info(f"Rank {rank}: disabling summary writer")
last_training_time = time.time()
torch.autograd.set_detect_anomaly(True)
batch_id = 0
for epoch in range(num_epochs):
if train_data_sampler is not None:
train_data_sampler.set_epoch(epoch)
if eval_data_sampler is not None:
eval_data_sampler.set_epoch(epoch)
model.train()
for row in iter(train_data_loader):
seq_features, target_ids, target_ratings = movielens_seq_features_from_row(
row, device=device, max_output_length=gr_output_length + 1,
)
if (batch_id % eval_interval) == 0:
model.eval()
seq_features, target_ids, target_ratings = movielens_seq_features_from_row(
row,
device=device,
max_output_length=gr_output_length + 1,
)
eval_state = get_eval_state(
model=model.module,
all_item_ids=dataset.all_item_ids,
negatives_sampler=negatives_sampler,
top_k_module_fn=lambda item_embeddings, item_ids: get_top_k_module(
top_k_method=top_k_method,
model=model.module,
item_embeddings=item_embeddings,
item_ids=item_ids,
),
device=device,
float_dtype=torch.bfloat16 if main_module_bf16 else None,
)
eval_dict = eval_metrics_v2_from_tensors(
eval_state, model.module, seq_features, target_ids=target_ids, target_ratings=target_ratings,
user_max_batch_size=eval_user_max_batch_size,
dtype=torch.bfloat16 if main_module_bf16 else None,
)
add_to_summary_writer(writer, batch_id, eval_dict, prefix="eval", world_size=world_size)
logging.info(
f"rank {rank}: batch-stat (eval): iter {batch_id} (epoch {epoch}): " +
f"NDCG@10 {_avg(eval_dict['ndcg@10'], world_size):.4f}, "
f"HR@10 {_avg(eval_dict['hr@10'], world_size):.4f}, "
f"HR@50 {_avg(eval_dict['hr@50'], world_size):.4f}, " +
f"MRR {_avg(eval_dict['mrr'], world_size):.4f} ")
model.train()
# TODO: consider separating this out?
B, N = seq_features.past_ids.shape
seq_features.past_ids.scatter_(
dim=1, index=seq_features.past_lengths.view(-1, 1), src=target_ids.view(-1, 1),
)
opt.zero_grad()
input_embeddings = model.module.get_item_embeddings(seq_features.past_ids)
seq_embeddings = model(
past_lengths=seq_features.past_lengths,
past_ids=seq_features.past_ids,
past_embeddings=input_embeddings,
past_payloads=seq_features.past_payloads,
) # [B, X]
supervision_ids = seq_features.past_ids
if sampling_strategy == "in-batch":
# get_item_embeddings currently assume 1-d tensor.
in_batch_ids = supervision_ids.view(-1)
negatives_sampler.process_batch(
ids=in_batch_ids,
presences=(in_batch_ids != 0),
embeddings=model.module.get_item_embeddings(in_batch_ids),
)
else:
negatives_sampler._item_emb = model.module._embedding_module._item_emb
ar_mask = supervision_ids[:, 1:] != 0
loss = ar_loss(
lengths=seq_features.past_lengths, # [B],
output_embeddings=seq_embeddings[:, :-1, :], # [B, N-1, D]
supervision_ids=supervision_ids[:, 1:], # [B, N-1]
supervision_embeddings=input_embeddings[:, 1:, :], # [B, N - 1, D]
supervision_weights=ar_mask.float(),
negatives_sampler=negatives_sampler,
) # [B, N]
if rank == 0:
writer.add_scalar("losses/ar_loss", loss, batch_id)
loss.backward()
# Optional linear warmup.
if batch_id < num_warmup_steps:
lr_scalar = min(1., float(batch_id + 1) / num_warmup_steps)
for pg in opt.param_groups:
pg['lr'] = lr_scalar * learning_rate
lr = lr_scalar * learning_rate
else:
lr = learning_rate
if (batch_id % eval_interval) == 0:
logging.info(f" rank: {rank}, batch-stat (train): step {batch_id} "
f"(epoch {epoch} in {time.time() - last_training_time:.2f}s): {loss:.6f}")
last_training_time = time.time()
if rank == 0:
writer.add_scalar("loss/train", loss, batch_id)
writer.add_scalar("lr", lr, batch_id)
opt.step()
batch_id += 1
def is_full_eval(epoch: int) -> bool:
return (epoch % full_eval_every_n) == 0
# eval per epoch
eval_dict_all = None
eval_start_time = time.time()
model.eval()
eval_state = get_eval_state(
model=model.module,
all_item_ids=dataset.all_item_ids,
negatives_sampler=negatives_sampler,
top_k_module_fn=lambda item_embeddings, item_ids: get_top_k_module(
top_k_method=top_k_method,
model=model.module,
item_embeddings=item_embeddings,
item_ids=item_ids,
),
device=device,
float_dtype=torch.bfloat16 if main_module_bf16 else None,
)
for eval_iter, row in enumerate(iter(eval_data_loader)):
seq_features, target_ids, target_ratings = movielens_seq_features_from_row(row, device=device, max_output_length=gr_output_length + 1)
eval_dict = eval_metrics_v2_from_tensors(
eval_state, model.module, seq_features, target_ids=target_ids, target_ratings=target_ratings,
user_max_batch_size=eval_user_max_batch_size,
dtype=torch.bfloat16 if main_module_bf16 else None,
)
if eval_dict_all is None:
eval_dict_all = {}
for k, v in eval_dict.items():
eval_dict_all[k] = []
for k, v in eval_dict.items():
eval_dict_all[k] = eval_dict_all[k] + [v]
del eval_dict
if (eval_iter + 1 >= partial_eval_num_iters) and (not is_full_eval(epoch)):
logging.info(f"Truncating epoch {epoch} eval to {eval_iter + 1} iters to save cost..")
break
for k, v in eval_dict_all.items():
eval_dict_all[k] = torch.cat(v, dim=-1)
ndcg_10 = _avg(eval_dict_all["ndcg@10"], world_size=world_size)
ndcg_50 = _avg(eval_dict_all["ndcg@50"], world_size=world_size)
hr_10 = _avg(eval_dict_all["hr@10"], world_size=world_size)
hr_50 = _avg(eval_dict_all["hr@50"], world_size=world_size)
mrr = _avg(eval_dict_all["mrr"], world_size=world_size)
add_to_summary_writer(writer, batch_id=epoch, metrics=eval_dict_all, prefix="eval_epoch", world_size=world_size)
if full_eval_every_n > 1 and is_full_eval(epoch):
add_to_summary_writer(writer, batch_id=epoch, metrics=eval_dict_all, prefix="eval_epoch_full", world_size=world_size)
if rank == 0 and epoch > 0 and (epoch % save_ckpt_every_n) == 0:
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': opt.state_dict(),
}, f"./ckpts/{model_desc}_ep{epoch}")
logging.info(f"rank {rank}: eval @ epoch {epoch} in {time.time() - eval_start_time:.2f}s: "
f"NDCG@10 {ndcg_10:.4f}, NDCG@50 {ndcg_50:.4f}, HR@10 {hr_10:.4f}, HR@50 {hr_50:.4f}, MRR {mrr:.4f}")
last_training_time = time.time()
if rank == 0:
if writer is not None:
writer.flush()
writer.close()
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': opt.state_dict(),
}, f"./ckpts/{model_desc}_ep{epoch}")
cleanup()
def mp_train_fn(
rank: int,
world_size: int,
master_port: int,
gin_config_file: Optional[str],
) -> None:
if gin_config_file is not None:
# Hack as absl doesn't support flag parsing inside multiprocessing.
logging.info(f"Rank {rank}: loading gin config from {gin_config_file}")
gin.parse_config_file(gin_config_file)
train_fn(rank, world_size, master_port)
def main(argv):
world_size = torch.cuda.device_count()
mp.set_start_method('forkserver')
mp.spawn(mp_train_fn,
args=(world_size, FLAGS.master_port, FLAGS.gin_config_file),
nprocs=world_size,
join=True)
if __name__ == "__main__":
app.run(main)