forked from dmlc/mxnet-memonger
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example_lstm.py
204 lines (180 loc) · 8.04 KB
/
example_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""
Example memory allocator on LSTM
The LSTM construction code is copied from mxnet example.
See line 46 for setting mirror stage.
"""
import sys
import mxnet as mx
import numpy as np
from collections import namedtuple
import time
import math
import memonger
LSTMState = namedtuple("LSTMState", ["c", "h"])
LSTMParam = namedtuple("LSTMParam", ["i2h_weight", "i2h_bias",
"h2h_weight", "h2h_bias"])
LSTMModel = namedtuple("LSTMModel", ["rnn_exec", "symbol",
"init_states", "last_states",
"seq_data", "seq_labels", "seq_outputs",
"param_blocks"])
def lstm(num_hidden, indata, prev_state, param, seqidx, layeridx, dropout=0.):
"""LSTM Cell symbol"""
if dropout > 0.:
indata = mx.sym.Dropout(data=indata, p=dropout)
i2h = mx.sym.FullyConnected(data=indata,
weight=param.i2h_weight,
bias=param.i2h_bias,
num_hidden=num_hidden * 4,
name="t%d_l%d_i2h" % (seqidx, layeridx))
h2h = mx.sym.FullyConnected(data=prev_state.h,
weight=param.h2h_weight,
bias=param.h2h_bias,
num_hidden=num_hidden * 4,
name="t%d_l%d_h2h" % (seqidx, layeridx))
gates = i2h + h2h
slice_gates = mx.sym.SliceChannel(gates, num_outputs=4,
name="t%d_l%d_slice" % (seqidx, layeridx))
in_gate = mx.sym.Activation(slice_gates[0], act_type="sigmoid")
in_transform = mx.sym.Activation(slice_gates[1], act_type="tanh")
forget_gate = mx.sym.Activation(slice_gates[2], act_type="sigmoid")
out_gate = mx.sym.Activation(slice_gates[3], act_type="sigmoid")
next_c = (forget_gate * prev_state.c) + (in_gate * in_transform)
next_h = out_gate * mx.sym.Activation(next_c, act_type="tanh")
# For LSTM, we need to set mirror stage as integer,
# the mirror stage of the same name will be considered as the same cut-line
next_c._set_attr(mirror_stage=str(seqidx))
next_h._set_attr(mirror_stage=str(seqidx))
return LSTMState(c=next_c, h=next_h)
def lstm_unroll(num_lstm_layer, seq_len, input_size,
num_hidden, num_embed, num_label, dropout=0.,
concat_decode=True, use_loss=False):
"""unrolled lstm network"""
# initialize the parameter symbols
embed_weight=mx.sym.Variable("embed_weight")
cls_weight = mx.sym.Variable("cls_weight")
cls_bias = mx.sym.Variable("cls_bias")
param_cells = []
last_states = []
for i in range(num_lstm_layer):
param_cells.append(LSTMParam(i2h_weight = mx.sym.Variable("l%d_i2h_weight" % i),
i2h_bias = mx.sym.Variable("l%d_i2h_bias" % i),
h2h_weight = mx.sym.Variable("l%d_h2h_weight" % i),
h2h_bias = mx.sym.Variable("l%d_h2h_bias" % i)))
state = LSTMState(c=mx.sym.Variable("l%d_init_c" % i),
h=mx.sym.Variable("l%d_init_h" % i))
last_states.append(state)
assert(len(last_states) == num_lstm_layer)
last_hidden = []
for seqidx in range(seq_len):
# embeding layer
with mx.AttrScope(ctx_group='embed'):
data = mx.sym.Variable("t%d_data" % seqidx)
hidden = mx.sym.FullyConnected(data=data,
weight=embed_weight,
no_bias=True,
num_hidden=num_embed,
name="t%d_embed" % seqidx)
# stack LSTM
for i in range(num_lstm_layer):
if i==0:
dp=0.
else:
dp = dropout
with mx.AttrScope(ctx_group='layer%d' % i):
next_state = lstm(num_hidden, indata=hidden,
prev_state=last_states[i],
param=param_cells[i],
seqidx=seqidx, layeridx=i, dropout=dp)
hidden = next_state.h
last_states[i] = next_state
# decoder
if dropout > 0.:
hidden = mx.sym.Dropout(data=hidden, p=dropout)
last_hidden.append(hidden)
out_prob = []
if not concat_decode:
for seqidx in range(seq_len):
with mx.AttrScope(ctx_group='decode'):
fc = mx.sym.FullyConnected(data=last_hidden[seqidx],
weight=cls_weight,
bias=cls_bias,
num_hidden=num_label,
name="t%d_cls" % seqidx)
label = mx.sym.Variable("t%d_label" % seqidx)
if use_loss:
sm = mx.sym.softmax_cross_entropy(fc, label, name="t%d_sm" % seqidx)
else:
sm = mx.sym.SoftmaxOutput(data=fc, label=label, name="t%d_sm" % seqidx)
out_prob.append(sm)
else:
with mx.AttrScope(ctx_group='decode'):
concat = mx.sym.Concat(*last_hidden, dim = 0)
fc = mx.sym.FullyConnected(data=concat,
weight=cls_weight,
bias=cls_bias,
num_hidden=num_label)
label = mx.sym.Variable("label")
if use_loss:
sm = mx.sym.softmax_cross_entropy(fc, label, name="sm")
else:
sm = mx.sym.SoftmaxOutput(data=fc, label=label, name="sm")
out_prob = [sm]
for i in range(num_lstm_layer):
state = last_states[i]
state = LSTMState(c=mx.sym.BlockGrad(state.c, name="l%d_last_c" % i),
h=mx.sym.BlockGrad(state.h, name="l%d_last_h" % i))
last_states[i] = state
unpack_c = [state.c for state in last_states]
unpack_h = [state.h for state in last_states]
list_all = out_prob + unpack_c + unpack_h
return mx.sym.Group(list_all)
def is_param_name(name):
return name.endswith("weight") or name.endswith("bias") or\
name.endswith("gamma") or name.endswith("beta")
def get_input_shapes(rnn_sym, batch_size, num_hidden, input_size, seq_len):
arg_names = rnn_sym.list_arguments()
input_shapes = {}
for name in arg_names:
if name.endswith("init_c") or name.endswith("init_h"):
input_shapes[name] = (batch_size, num_hidden)
elif name.endswith("data"):
input_shapes[name] = (batch_size, input_size)
elif name == "label":
input_shapes[name] = (batch_size * seq_len, )
elif name.endswith("label"):
input_shapes[name] = (batch_size, )
else:
pass
return input_shapes
# Some configurations of LSTM
# Set concate decoder to use a single softmax will increase memory usage.
# But can get a bit faster speed.
concat_decode=False
# Set use loss means we use softmax_cross_entropy loss
# This can help reduce memory
use_loss=True
batch_size = 64
seq_len = 1000
num_hidden = 1024
num_embed = 1024
input_size = 50
num_lstm_layer = 4
num_label = 5000
net = lstm_unroll(
num_lstm_layer=num_lstm_layer,
seq_len=seq_len, input_size=input_size,
num_hidden=num_hidden, num_embed=num_embed,
num_label=num_label,
concat_decode=concat_decode,
use_loss=use_loss)
ishapes = get_input_shapes(net,
batch_size=batch_size,
num_hidden=num_hidden,
input_size=input_size,
seq_len=seq_len)
net_mem_planned = memonger.search_plan(net, **ishapes)
old_cost = memonger.get_cost(net, **ishapes)
new_cost = memonger.get_cost(net_mem_planned, **ishapes)
print('Old feature map cost=%d MB' % old_cost)
print('New feature map cost=%d MB' % new_cost)
# You can savely feed the net to the subsequent mxnet training script.