-
Notifications
You must be signed in to change notification settings - Fork 7
/
dataset.py
149 lines (107 loc) · 4.44 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import random
import torch.utils.data as data
from os import listdir
from os.path import join
from PIL import Image, ImageOps
def is_image_file(filename):
return any(filename.endswith(extension) for extension in [".png", ".jpg", ".bmp"])
def load_img(filepath):
img = Image.open(filepath).convert('RGB')
return img
def rescale_img(img_in, scale):
size_in = img_in.size
new_size_in = tuple([int(x * scale) for x in size_in])
img_in = img_in.resize(new_size_in, resample=Image.BICUBIC)
return img_in
def get_patch(img_in, img_tar, patch_size, scale=1, ix=-1, iy=-1):
(ih, iw) = img_in.size
patch_mult = scale
tp = patch_mult * patch_size
ip = tp // scale
if ix == -1:
ix = random.randrange(0, iw - ip + 1)
if iy == -1:
iy = random.randrange(0, ih - ip + 1)
(tx, ty) = (scale * ix, scale * iy)
img_in = img_in.crop((iy, ix, iy + ip, ix + ip))
img_tar = img_tar.crop((ty, tx, ty + tp, tx + tp))
info_patch = {
'ix': ix, 'iy': iy, 'ip': ip, 'tx': tx, 'ty': ty, 'tp': tp}
return img_in, img_tar, info_patch
def augment(img_in, img_tar, flip_h=True, rot=True):
info_aug = {'flip_h': False, 'flip_v': False, 'trans': False}
if random.random() < 0.5 and flip_h:
img_in = ImageOps.flip(img_in)
img_tar = ImageOps.flip(img_tar)
info_aug['flip_h'] = True
if rot:
if random.random() < 0.5:
img_in = ImageOps.mirror(img_in)
img_tar = ImageOps.mirror(img_tar)
info_aug['flip_v'] = True
if random.random() < 0.5:
img_in = img_in.rotate(180)
img_tar = img_tar.rotate(180)
info_aug['trans'] = True
return img_in, img_tar, info_aug
class DatasetFromFolder(data.Dataset):
def __init__(self, label_dir, data_dir, patch_size, data_augmentation, transform=None):
super(DatasetFromFolder, self).__init__()
self.label_path = label_dir
data_filenames = [join(data_dir, x) for x in listdir(data_dir) if is_image_file(x)]
data_filenames.sort()
self.data_filenames = data_filenames
self.patch_size = patch_size
self.transform = transform
self.data_augmentation = data_augmentation
def __getitem__(self, index):
_, file = os.path.split(self.data_filenames[index])
k = random.randint(0,3)
if k == 0:
label_filenames = self.label_path + '/O/' + file
if k == 1 :
label_filenames = self.label_path + '/S/' + file
if k == 2 :
label_filenames = self.label_path + '/C/' + file
if k == 3 :
label_filenames = self.label_path + '/G/' + file
target = load_img(label_filenames)
input = load_img(self.data_filenames[index])
input = input.resize((512, 512), resample=Image.BICUBIC)
target = target.resize((512, 512), resample=Image.BICUBIC)
input, target, _ = get_patch(input, target, self.patch_size)
if self.data_augmentation:
input, target, _ = augment(input, target)
if self.transform:
input = self.transform(input)
target = self.transform(target)
return input, target, file
def __len__(self):
return len(self.data_filenames)
class DatasetFromFolderEval(data.Dataset):
def __init__(self, data_dir, label_dir, transform=None):
super(DatasetFromFolderEval, self).__init__()
data_filenames = [join(data_dir, x) for x in listdir(data_dir) if is_image_file(x)]
data_filenames.sort()
self.data_filenames = data_filenames
label_filenames = [join(label_dir, x) for x in listdir(label_dir) if is_image_file(x)]
label_filenames.sort()
self.label_filenames = label_filenames
self.transform = transform
def __getitem__(self, index):
input = load_img(self.data_filenames[index])
label = load_img(self.label_filenames[index])
_, file = os.path.split(self.data_filenames[index])
(ih, iw) = input.size
dh = ih % 8
dw = iw % 8
new_h, new_w = ih - dh, iw - dw
input = input.resize((new_h, new_w))
label = label.resize((new_h, new_w))
if self.transform:
input = self.transform(input)
label = self.transform(label)
return input, label, file
def __len__(self):
return len(self.data_filenames)