-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathgmgan_inference_mnist.py
561 lines (462 loc) · 20.9 KB
/
gmgan_inference_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import os, sys, shutil, time
sys.path.append(os.getcwd())
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import sklearn.datasets
from sklearn.manifold import TSNE
import tensorflow as tf
import tflib as lib
import tflib.ops.linear
import tflib.ops.conv2d
import tflib.ops.batchnorm
import tflib.ops.deconv2d
import tflib.save_images
import tflib.mnist
import tflib.plot
import tflib.visualization
import tflib.objs.gan_inference
import tflib.objs.mmd
import tflib.objs.kl
import tflib.objs.kl_aggregated
import tflib.objs.discrete_variables
import tflib.utils.distance
'''
hyperparameters
'''
MODE = 'local_ep' # ali, local_ep, alice, local_epce, vegan
if MODE in ['vegan-kl', 'vegan-ikl', 'vegan-jsd']:
TYPE_Q = 'learn_std' # learn_std, fix_std, no_std
TYPE_P = 'no_std'
Z_SAMPLES = 100 # MC estimation for D(q(z)||p(z))
elif MODE is 'vae':
TYPE_Q = 'learn_std'
TYPE_P = 'learn_std'
else:
TYPE_Q = 'no_std'
TYPE_P = 'no_std'
STD = .1 # For fix_std
d_list = ['alice', 'alice-z', 'alice-x', 'vegan', 'vegan-wgan-gp', 'vegan-kl', 'vegan-ikl', 'vegan-jsd', 'vegan-mmd', 'local_epce']
if MODE in d_list:
DISTANCE_X = 'l2' # l1, l2
if MODE in ['vegan-mmd', 'vegan-kl', 'vegan-ikl', 'vegan-jsd', 'vae']:
CRITIC_ITERS = 0 # No discriminators
elif MODE in ['vegan', 'vegan-wgan-gp', 'wali', 'wali-gp']:
CRITIC_ITERS = 5 # 5 iters of D per iter of G
else:
CRITIC_ITERS = 1
BATCH_SIZE = 50 # Batch size
LAMBDA = 1. # Balance reconstruction and regularization in vegan
LR = 2e-4
if MODE in ['vae']:
BETA1 = .9
else:
BETA1 = .5
ITERS = 200000 # How many generator iterations to train for
DIM = 64 # Model dimensionality
OUTPUT_DIM = 784 # Number of pixels in MNIST (28*28)
if MODE in ['vegan', 'vegan-wgan-gp', 'vegan-kl', 'vegan-jsd', 'vegan-ikl']:
BN_FLAG = False # Use batch_norm or not
DIM_LATENT = 8 # Dimensionality of the latent z
else:
BN_FLAG = True
DIM_LATENT = 128
N_COMS = 30
N_VIS = N_COMS*10 # Number of samples to be visualized
assert(N_VIS%N_COMS==0)
MODE_K = 'CONCRETE' # CONCRETE, REINFORCE, STRAIGHT_THROUGHT_CONCRETE, STRAIGHT_THROUGHT
if MODE_K is 'REINFORCE':
CONTROL_VARIATE = .0
elif MODE_K in ['CONCRETE', 'STRAIGHT_THROUGHT_CONCRETE']:
TEMP_INIT = .1
TEMP = TEMP_INIT
'''
logs
'''
filename_script=os.path.basename(os.path.realpath(__file__))
outf=os.path.join("result", os.path.splitext(filename_script)[0])
outf+='.MODE-'
outf+=MODE
outf+='.N_COMS-'
outf+=str(N_COMS)
outf+='.'
outf+=str(int(time.time()))
if not os.path.exists(outf):
os.makedirs(outf)
logfile=os.path.join(outf, 'logfile.txt')
shutil.copy(os.path.realpath(__file__), os.path.join(outf, filename_script))
lib.print_model_settings_to_file(locals().copy(), logfile)
'''
models
'''
unit_std_x = tf.constant((STD*np.ones(shape=(BATCH_SIZE, OUTPUT_DIM))).astype('float32'))
unit_std_z = tf.constant((STD*np.ones(shape=(BATCH_SIZE, DIM_LATENT))).astype('float32'))
### prior
PI = tf.constant(np.asarray([1./N_COMS,]*N_COMS, dtype=np.float32))
prior_k = tf.distributions.Categorical(probs=PI)
def sample_gumbel(shape, eps=1e-20):
# Sample from Gumbel(0, 1)
U = tf.random_uniform(shape,minval=0,maxval=1)
return -tf.log(-tf.log(U + eps) + eps)
def LeakyReLU(x, alpha=0.2):
return tf.maximum(alpha*x, x)
def ReLULayer(name, n_in, n_out, inputs):
output = lib.ops.linear.Linear(
name+'.Linear',
n_in,
n_out,
inputs,
initialization='he'
)
return tf.nn.relu(output)
def LeakyReLULayer(name, n_in, n_out, inputs):
output = lib.ops.linear.Linear(
name+'.Linear',
n_in,
n_out,
inputs,
initialization='he'
)
return LeakyReLU(output)
def GaussianNoiseLayer(input_layer, std):
noise = tf.random_normal(shape=tf.shape(input_layer), mean=0.0, stddev=std, dtype=tf.float32)
return input_layer + noise
### Very simple MoG
def HyperGenerator(hyper_k, hyper_noise):
com_mu = lib.param('Generator.Hyper.Mu', np.random.normal(size=(N_COMS, DIM_LATENT)).astype('float32'))
noise = tf.add(tf.matmul(tf.cast(hyper_k, tf.float32), com_mu), hyper_noise)
return noise
### Very simple soft alignment
def HyperExtractor(latent_z):
com_mu = lib.param('Generator.Hyper.Mu', np.random.normal(size=(N_COMS, DIM_LATENT)).astype('float32'))
com_logits = -.5*tf.reduce_sum(tf.pow((tf.expand_dims(latent_z, axis=1) - tf.expand_dims(com_mu, axis=0)), 2), axis=-1) + tf.expand_dims(tf.log(PI), axis=0)
if MODE_K is 'REINFORCE':
k = tf.one_hot(indices=tf.argmax(com_logits, axis=-1), depth=N_COMS)
elif MODE_K is 'CONCRETE':
k = tf.nn.softmax((com_logits + sample_gumbel(tf.shape(com_logits)))/TEMP)
elif MODE_K is 'STRAIGHT_THROUGHT_CONCRETE':
k = tf.nn.softmax((com_logits + sample_gumbel(tf.shape(com_logits)))/TEMP)
k_hard = tf.one_hot(indices=tf.argmax(k, axis=-1), depth=N_COMS)
k = tf.stop_gradient(k_hard - k) + k
elif MODE_K is 'STRAIGHT_THROUGHT':
k_hard = tf.one_hot(indices=tf.argmax(com_logits, axis=-1), depth=N_COMS)
k = tf.stop_gradient(k_hard - com_logits) + com_logits
return com_logits, k
def Generator(noise):
output = lib.ops.linear.Linear('Generator.Input', DIM_LATENT, 4*4*4*DIM, noise)
if BN_FLAG:
output = lib.ops.batchnorm.Batchnorm('Generator.BN1', [0], output)
output = tf.nn.relu(output)
output = tf.reshape(output, [-1, 4*DIM, 4, 4])
output = lib.ops.deconv2d.Deconv2D('Generator.2', 4*DIM, 2*DIM, 5, output)
if BN_FLAG:
output = lib.ops.batchnorm.Batchnorm('Generator.BN2', [0,2,3], output)
output = tf.nn.relu(output)
output = output[:,:,:7,:7]
output = lib.ops.deconv2d.Deconv2D('Generator.3', 2*DIM, DIM, 5, output)
if BN_FLAG:
output = lib.ops.batchnorm.Batchnorm('Generator.BN3', [0,2,3], output)
output = tf.nn.relu(output)
output = lib.ops.deconv2d.Deconv2D('Generator.5', DIM, 1, 5, output)
output = tf.nn.sigmoid(output)
return tf.reshape(output, [-1, OUTPUT_DIM]), None, None
def Extractor(inputs):
output = tf.reshape(inputs, [-1, 1, 28, 28])
output = lib.ops.conv2d.Conv2D('Extractor.1',1,DIM,5,output,stride=2)
output = LeakyReLU(output)
output = lib.ops.conv2d.Conv2D('Extractor.2', DIM, 2*DIM, 5, output, stride=2)
if BN_FLAG:
output = lib.ops.batchnorm.Batchnorm('Extractor.BN2', [0,2,3], output)
output = LeakyReLU(output)
output = lib.ops.conv2d.Conv2D('Extractor.3', 2*DIM, 4*DIM, 5, output, stride=2)
if BN_FLAG:
output = lib.ops.batchnorm.Batchnorm('Extractor.BN3', [0,2,3], output)
output = LeakyReLU(output)
output = tf.reshape(output, [-1, 4*4*4*DIM])
if TYPE_Q is 'learn_std':
log_std = lib.ops.linear.Linear('Extractor.Std', 4*4*4*DIM, DIM_LATENT, output)
std = tf.exp(log_std)
elif TYPE_Q is 'fix_std':
std = unit_std_z
else:
std = None
mean = None
output = lib.ops.linear.Linear('Extractor.Output', 4*4*4*DIM, DIM_LATENT, output)
if TYPE_Q in ['learn_std', 'fix_std']:
epsilon = tf.random_normal(unit_std_z.shape)
mean = output
output = tf.add(mean, tf.multiply(epsilon, std))
return tf.reshape(output, [-1, DIM_LATENT]), mean, std
if MODE in ['vegan', 'vegan-wgan-gp']:
def Discriminator(z, k):
output = tf.concat([z, k], 1)
output = lib.ops.linear.Linear('Discriminator.HyperInput', DIM_LATENT+N_COMS, 512, output)
output = LeakyReLU(output)
output = tf.layers.dropout(output, rate=.2)
output = lib.ops.linear.Linear('Discriminator.Hyper2', 512, 512, output)
output = LeakyReLU(output)
output = tf.layers.dropout(output, rate=.2)
output = lib.ops.linear.Linear('Discriminator.Hyper3', 512, 512, output)
output = LeakyReLU(output)
output = tf.layers.dropout(output, rate=.2)
output = lib.ops.linear.Linear('Discriminator.HyperOutput', 512, 1, output)
return tf.reshape(output, [-1])
elif MODE in ['local_ep', 'local_epce']:
def HyperDiscriminator(z, k):
output = tf.concat([z, k], 1)
output = lib.ops.linear.Linear('Discriminator.HyperInput', DIM_LATENT+N_COMS, 512, output)
output = LeakyReLU(output)
output = tf.layers.dropout(output, rate=.2)
output = lib.ops.linear.Linear('Discriminator.Hyper2', 512, 512, output)
output = LeakyReLU(output)
output = tf.layers.dropout(output, rate=.2)
output = lib.ops.linear.Linear('Discriminator.Hyper3', 512, 512, output)
output = LeakyReLU(output)
output = tf.layers.dropout(output, rate=.2)
output = lib.ops.linear.Linear('Discriminator.HyperOutput', 512, 1, output)
return tf.reshape(output, [-1])
def Discriminator(x, z):
output = tf.reshape(x, [-1, 1, 28, 28])
output = lib.ops.conv2d.Conv2D('Discriminator.1',1,DIM,5,output,stride=2)
output = LeakyReLU(output)
output = tf.layers.dropout(output, rate=.2)
output = lib.ops.conv2d.Conv2D('Discriminator.2', DIM, 2*DIM, 5, output, stride=2)
output = LeakyReLU(output)
output = tf.layers.dropout(output, rate=.2)
output = lib.ops.conv2d.Conv2D('Discriminator.3', 2*DIM, 4*DIM, 5, output, stride=2)
output = LeakyReLU(output)
output = tf.layers.dropout(output, rate=.2)
output = tf.reshape(output, [-1, 4*4*4*DIM])
z_output = lib.ops.linear.Linear('Discriminator.z1', DIM_LATENT, 512, z)
z_output = LeakyReLU(z_output)
z_output = tf.layers.dropout(z_output, rate=.2)
output = tf.concat([output, z_output], 1)
output = lib.ops.linear.Linear('Discriminator.zx1', 4*4*4*DIM+512, 512, output)
output = LeakyReLU(output)
output = tf.layers.dropout(output, rate=.2)
output = lib.ops.linear.Linear('Discriminator.Output', 512, 1, output)
return tf.reshape(output, [-1])
elif MODE in ['vegan-mmd', 'vegan-kl', 'vegan-ikl', 'vegan-jsd', 'vae']:
pass # no discriminator
else:
def Discriminator(x, z, k):
output = tf.reshape(x, [-1, 1, 28, 28])
output = lib.ops.conv2d.Conv2D('Discriminator.x1',1,DIM,5,output,stride=2)
output = LeakyReLU(output)
output = tf.layers.dropout(output, rate=.2)
output = lib.ops.conv2d.Conv2D('Discriminator.x2', DIM, 2*DIM, 5, output, stride=2)
output = LeakyReLU(output)
output = tf.layers.dropout(output, rate=.2)
output = lib.ops.conv2d.Conv2D('Discriminator.x3', 2*DIM, 4*DIM, 5, output, stride=2)
output = LeakyReLU(output)
output = tf.layers.dropout(output, rate=.2)
output = tf.reshape(output, [-1, 4*4*4*DIM])
zk_output = tf.concat([z, k], 1)
zk_output = lib.ops.linear.Linear('Discriminator.zk1', DIM_LATENT+N_COMS, 512, zk_output)
zk_output = LeakyReLU(zk_output)
zk_output = tf.layers.dropout(zk_output, rate=.2)
output = tf.concat([output, zk_output], 1)
output = lib.ops.linear.Linear('Discriminator.zkx1', 4*4*4*DIM+512, 512, output)
output = LeakyReLU(output)
output = tf.layers.dropout(output, rate=.2)
output = lib.ops.linear.Linear('Discriminator.Output', 512, 1, output)
return tf.reshape(output, [-1])
'''
losses
'''
real_x = tf.placeholder(tf.float32, shape=[BATCH_SIZE, OUTPUT_DIM])
q_z, q_z_mean, q_z_std = Extractor(real_x)
q_k_logits, q_k = HyperExtractor(q_z)
q_k_probs = tf.nn.softmax(q_k_logits)
if MODE_K is 'REINFORCE':
q_k_prob_max = tf.reduce_max(q_k_probs, axis=1)
rec_x, rec_x_mean, rec_x_std = Generator(q_z)
hyper_p_z = tf.random_normal([BATCH_SIZE, DIM_LATENT])
hyper_p_k = tf.one_hot(indices=prior_k.sample(BATCH_SIZE), depth=N_COMS)
p_z = HyperGenerator(hyper_p_k, hyper_p_z)
fake_x, _, _ = Generator(p_z)
rec_z, _, _ = Extractor(fake_x)
rec_q_k_logits, rec_q_k = HyperExtractor(rec_z)
if MODE_K is not 'REINFORCE':
score_function = None
if MODE is 'vegan':
disc_fake = Discriminator(p_z, hyper_p_k)
disc_real = Discriminator(q_z, q_k)
if MODE_K is 'REINFORCE':
score_function = lib.objs.discrete_variables.score_function(disc_real, q_k_prob_max, CONTROL_VARIATE)
elif MODE in ['local_ep', 'local_epce']:
disc_fake, disc_real = [],[]
disc_fake.append(HyperDiscriminator(p_z, hyper_p_k))
disc_real.append(HyperDiscriminator(q_z, q_k))
disc_fake.append(Discriminator(fake_x, p_z))
disc_real.append(Discriminator(real_x, q_z))
if MODE_K is 'REINFORCE':
score_function = lib.objs.discrete_variables.score_function(disc_real[0], q_k_prob_max, CONTROL_VARIATE)
else:
disc_real = Discriminator(real_x, q_z, q_k)
disc_fake = Discriminator(fake_x, p_z, hyper_p_k)
if MODE_K is 'REINFORCE':
score_function = lib.objs.discrete_variables.score_function(disc_real, q_k_prob_max, CONTROL_VARIATE)
gen_params = lib.params_with_name('Generator')
ext_params = lib.params_with_name('Extractor')
disc_params = lib.params_with_name('Discriminator')
if MODE == 'ali':
rec_penalty = None
gen_cost, disc_cost, gen_train_op, disc_train_op = lib.objs.gan_inference.ali(disc_fake, disc_real, gen_params+ext_params, disc_params, lr=LR, beta1=BETA1, s_f=score_function)
elif MODE == 'alice':
rec_penalty = 1.*lib.utils.distance.distance(real_x, rec_x, DISTANCE_X)
# rec_penalty += 1.*lib.utils.distance.distance(p_z, rec_z, DISTANCE_X)
# rec_penalty += 1.*tf.nn.softmax_cross_entropy_with_logits(labels=hyper_p_k, logits=rec_q_k_logits)
gen_cost, disc_cost, gen_train_op, disc_train_op = lib.objs.gan_inference.alice(disc_fake, disc_real, rec_penalty, gen_params+ext_params, disc_params, lr=LR, beta1=BETA1, s_f=score_function)
elif MODE == 'local_ep':
rec_penalty = None
gen_cost, disc_cost, gen_train_op, disc_train_op = lib.objs.gan_inference.local_ep(disc_fake, disc_real, gen_params+ext_params, disc_params, lr=LR, beta1=BETA1, s_f=score_function)
elif MODE == 'local_epce':
rec_penalty = 1.*lib.utils.distance.distance(real_x, rec_x, DISTANCE_X)
# rec_penalty += 1.*lib.utils.distance.distance(p_z, rec_z, DISTANCE_X)
# rec_penalty += 1.*tf.nn.softmax_cross_entropy_with_logits(labels=hyper_p_k, logits=rec_q_k_logits)
gen_cost, disc_cost, gen_train_op, disc_train_op = lib.objs.gan_inference.local_epce(disc_fake, disc_real, rec_penalty, gen_params+ext_params, disc_params, lr=LR, beta1=BETA1, s_f=score_function)
elif MODE == 'vegan':
rec_penalty = 1.*lib.utils.distance.distance(real_x, rec_x, DISTANCE_X)
gen_cost, disc_cost, gen_train_op, disc_train_op = lib.objs.gan_inference.vegan(disc_fake, disc_real, rec_penalty, gen_params+ext_params, disc_params, LAMBDA,lr=LR, beta1=BETA1, s_f=score_function)
else:
raise('NotImplementedError')
# For visualizing samples
# np_fixed_noise = np.repeat(np.random.normal(size=(N_VIS/N_COMS, DIM_LATENT)).astype('float32'), N_COMS, axis=0)
np_fixed_noise = np.random.normal(size=(N_VIS, DIM_LATENT)).astype('float32')
np_fixed_k = np.tile(np.eye(N_COMS, dtype=int), (N_VIS/N_COMS, 1))
hyper_fixed_noise = tf.constant(np_fixed_noise)
hyper_fixed_k = tf.constant(np_fixed_k)
fixed_noise = HyperGenerator(hyper_fixed_k, hyper_fixed_noise)
fixed_noise_samples, _, _ = Generator(fixed_noise)
def generate_image(frame, true_dist):
samples = session.run(fixed_noise_samples)
lib.save_images.save_images(
samples.reshape((N_VIS, 28, 28)),
os.path.join(outf, '{}_samples_{}.png'.format(frame, MODE)),
size = [N_VIS/N_COMS, N_COMS]
)
# Dataset iterator
train_gen, dev_gen, test_gen = lib.mnist.load(BATCH_SIZE, BATCH_SIZE)
def inf_train_gen():
while True:
for images,targets in train_gen():
yield images
# For reconstruction
fixed_data, _ = dev_gen().next()
fixed_q_z, _, _ = Extractor(fixed_data)
fixed_rec, _, _ = Generator(fixed_q_z)
def reconstruct_image(frame):
rec_samples = session.run(fixed_rec)
tmp_list = []
for d, r in zip(fixed_data, rec_samples):
tmp_list.append(d)
tmp_list.append(r)
rec_samples = np.vstack(tmp_list)
lib.save_images.save_images(
rec_samples.reshape((BATCH_SIZE*2, 28, 28)),
os.path.join(outf, '{}_reconstruction_{}.png'.format(frame, MODE))
)
saver = tf.train.Saver()
'''
Train loop
'''
with tf.Session() as session:
session.run(tf.global_variables_initializer())
gen = inf_train_gen()
total_num = np.sum([np.prod(v.shape) for v in tf.trainable_variables()])
print '\nTotol number of parameters', total_num
with open(logfile,'a') as f:
f.write('Totol number of parameters' + str(total_num) + '\n')
for iteration in xrange(ITERS):
start_time = time.time()
if iteration > 0:
_data = gen.next()
_gen_cost, _ = session.run([gen_cost, gen_train_op],
feed_dict={real_x: _data})
for i in xrange(CRITIC_ITERS):
_data = gen.next()
_disc_cost, _ = session.run(
[disc_cost, disc_train_op],
feed_dict={real_x: _data}
)
if MODE is 'wali':
_ = session.run(clip_disc_weights)
if MODE in ['vegan-mmd', 'vegan-kl', 'vegan-ikl', 'vegan-jsd', 'vae']:
if iteration > 0:
lib.plot.plot('train gen cost ', _gen_cost)
else:
lib.plot.plot('train disc cost', _disc_cost)
lib.plot.plot('time', time.time() - start_time)
# Calculate dev loss
if iteration % 100 == 99:
if rec_penalty is not None:
dev_rec_costs = []
dev_reg_costs = []
for images,_ in dev_gen():
_dev_rec_cost, _dev_gen_cost = session.run(
[rec_penalty, gen_cost],
feed_dict={real_x: images}
)
dev_rec_costs.append(_dev_rec_cost)
dev_reg_costs.append(_dev_gen_cost - _dev_rec_cost)
lib.plot.plot('dev rec cost', np.mean(dev_rec_costs))
lib.plot.plot('dev reg cost', np.mean(dev_reg_costs))
else:
dev_gen_costs = []
for images,_ in dev_gen():
_dev_gen_cost = session.run(
gen_cost,
feed_dict={real_x: images}
)
dev_gen_costs.append(_dev_gen_cost)
lib.plot.plot('dev gen cost', np.mean(dev_gen_costs))
# Generation and reconstruction
if iteration % 5000 == 4999:
generate_image(iteration, _data)
reconstruct_image(iteration)
# calculate accuracy on the test data
if iteration % 5000 == 4999:
y, prob_c = [],[]
for xb, yb in test_gen():
prob_cb = session.run(q_k_probs, feed_dict={real_x: xb})
prob_c.append(prob_cb)
y.append(yb)
prob_c = np.vstack(prob_c)
y = np.hstack(y)
ind_max_prob = np.argmax(prob_c, axis=0)
labels_for_clusters = y[ind_max_prob]
clusters = np.argmax(prob_c, axis=1)
# propage the labels to the samples and compute the accuracy
# todo rewrite in a clearer way
for i in xrange(labels_for_clusters.shape[0]):
clusters[clusters==i] = labels_for_clusters[i] + 1000
clusters = clusters - 1000
accuracy = np.mean((clusters==y).astype(np.float32))
lib.plot.plot('testing accuracy', accuracy)
# Latent space visualization and clustering
if iteration == ITERS - 1:
pk_dev, pz_dev, z_dev, y_dev, x_dev, q_k_dev = [],[],[],[],[],[]
for xb, yb in dev_gen():
pkb, pzb, zb, q_kb = session.run([hyper_p_k, p_z, q_z, q_k],feed_dict={real_x: xb})
z_dev.append(zb)
pz_dev.append(pzb)
pk_dev.append(np.argmax(pkb, axis=1))
y_dev.append(yb)
q_k_dev.append(np.argmax(q_kb, axis=1))
x_dev.append(xb)
z_dev_2D = TSNE().fit_transform(np.vstack(z_dev))
lib.visualization.scatter(data=z_dev_2D, label=np.hstack(y_dev), dir=outf, file_name='{}_manifold_{}.png'.format(iteration, MODE))
pz_dev_2D = TSNE().fit_transform(np.vstack(pz_dev))
lib.visualization.scatter(data=pz_dev_2D, label=np.hstack(pk_dev), dir=outf, file_name='{}_prior_{}.png'.format(iteration, MODE))
x_dev_2D = TSNE().fit_transform(np.vstack(x_dev))
lib.visualization.scatter(data=x_dev_2D, label=np.hstack(q_k_dev), dir=outf, file_name='{}_cluster_{}.png'.format(iteration, MODE))
lib.visualization.scatter(data=x_dev_2D, label=np.hstack(y_dev), dir=outf, file_name='{}_dev_data_vis_{}.png'.format(iteration, MODE))
# Write logs
if (iteration < 5) or (iteration % 100 == 99):
lib.plot.flush(outf, logfile)
lib.plot.tick()
# Save model
if iteration == ITERS - 1:
save_path = saver.save(session, os.path.join(outf, '{}_model_{}.ckpt'.format(iteration, MODE)))