-
Notifications
You must be signed in to change notification settings - Fork 60
/
x2y_yz2x_xy2p_ssl_mnist.py
506 lines (432 loc) · 20.8 KB
/
x2y_yz2x_xy2p_ssl_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
'''
This code implements a triple GAN for semi-supervised learning on MNIST
'''
import os, time, argparse, shutil
import numpy as np
import theano, lasagne
import theano.tensor as T
import lasagne.layers as ll
import lasagne.nonlinearities as ln
import nn
from lasagne.init import Normal
from theano.sandbox.rng_mrg import MRG_RandomStreams
from parmesan.datasets import load_mnist_realval
from layers.merge import MLPConcatLayer
from components.shortcuts import convlayer
from components.objectives import categorical_crossentropy_ssl_separated, categorical_crossentropy
import utils.paramgraphics as paramgraphics
'''
parameters
'''
# global
parser = argparse.ArgumentParser()
parser.add_argument("-key", type=str, default=argparse.SUPPRESS)
parser.add_argument("-ssl_seed", type=int, default=1)
parser.add_argument("-nlabeled", type=int, default=100)
parser.add_argument("-objective_flag", type=str, default='argmax')
parser.add_argument("-oldmodel", type=str, default=argparse.SUPPRESS)
args = parser.parse_args()
args = vars(args).items()
cfg = {}
for name, val in args:
cfg[name] = val
if cfg['ssl_seed'] == -1:
cfg['ssl_seed'] = int(time.time())
filename_script=os.path.basename(os.path.realpath(__file__))
outfolder=os.path.join("results-ssl", os.path.splitext(filename_script)[0])
outfolder+='.'
for item in cfg:
if item is not 'oldmodel':
outfolder += item+str(cfg[item])+'.'
else:
outfolder += 'oldmodel.'
outfolder+=str(int(time.time()))
if not os.path.exists(outfolder):
os.makedirs(outfolder)
sample_path = os.path.join(outfolder, 'sample')
os.makedirs(sample_path)
logfile=os.path.join(outfolder, 'logfile.log')
shutil.copy(os.path.realpath(__file__), os.path.join(outfolder, filename_script))
# fixed random seeds
ssl_data_seed=cfg['ssl_seed']
num_labelled=cfg['nlabeled']
print ssl_data_seed, num_labelled
seed=1234
rng=np.random.RandomState(seed)
theano_rng=MRG_RandomStreams(rng.randint(2 ** 15))
lasagne.random.set_rng(np.random.RandomState(rng.randint(2 ** 15)))
# dataset
data_dir='/home/chongxuan/mfs/data/mnist_real/mnist.pkl.gz'
# flags
valid_flag=False
objective_flag = cfg['objective_flag'] # integrate y, argmax
# pre-train C
pre_num_epoch = 0 if num_labelled > 100 else 30
pre_alpha_unlabeled_entropy=.3
pre_alpha_average=.3
pre_lr=3e-4
pre_batch_size_lc=min(100, num_labelled)
pre_batch_size_uc=500
# C
alpha_decay=1e-4
alpha_labeled=1.
alpha_unlabeled_entropy=.3
alpha_average=1e-3
alpha_cla=1.
# G
n_z=100
alpha_cla_g=.1
epoch_cla_g=300
# D
noise_D_data=.3
noise_D=.5
# optimization
b1_g=.5 # mom1 in Adam
b1_d=.5
b1_c=.5
# adjust batch size for different number of labeled data
batch_size_g=200
batch_size_l_c=min(100, num_labelled)
batch_size_u_c=max(100, 10000/num_labelled)
batch_size_u_d=400
batch_size_l_d=max(num_labelled/100, 1)
lr=1e-3
num_epochs=1000
anneal_lr_epoch=300
anneal_lr_every_epoch=1
anneal_lr_factor=.995
# data dependent
gen_final_non=ln.sigmoid
num_classes=10
dim_input=(28,28)
in_channels=1
colorImg=False
generation_scale=False
z_generated=num_classes
# evaluation
vis_epoch=10
eval_epoch=1
'''
data
'''
train_x, train_y, valid_x, valid_y, eval_x, eval_y = load_mnist_realval(data_dir)
if valid_flag:
eval_x = valid_x
eval_y = valid_y
else:
train_x = np.concatenate([train_x, valid_x])
train_y = np.hstack((train_y, valid_y))
train_y = np.int32(train_y)
eval_y = np.int32(eval_y)
train_x = train_x.astype('float32')
eval_x = eval_x.astype('float32')
x_unlabelled = train_x.copy()
rng_data = np.random.RandomState(ssl_data_seed)
inds = rng_data.permutation(train_x.shape[0])
train_x = train_x[inds]
train_y = train_y[inds]
x_labelled = []
y_labelled = []
for j in range(num_classes):
x_labelled.append(train_x[train_y==j][:num_labelled/num_classes])
y_labelled.append(train_y[train_y==j][:num_labelled/num_classes])
x_labelled = np.concatenate(x_labelled, axis=0)
y_labelled = np.concatenate(y_labelled, axis=0)
del train_x
if True:
print 'Size of training data', x_labelled.shape[0], x_unlabelled.shape[0]
y_order = np.argsort(y_labelled)
_x_mean = x_labelled[y_order]
image = paramgraphics.mat_to_img(_x_mean.T, dim_input, tile_shape=(num_classes, num_labelled/num_classes),colorImg=colorImg, scale=generation_scale, save_path=os.path.join(outfolder, 'x_l_'+str(ssl_data_seed)+'_triple-gan.png'))
pretrain_batches_train_uc = x_unlabelled.shape[0] / pre_batch_size_uc
pretrain_batches_train_lc = x_labelled.shape[0] / pre_batch_size_lc
n_batches_train_u_c = x_unlabelled.shape[0] / batch_size_u_c
n_batches_train_l_c = x_labelled.shape[0] / batch_size_l_c
n_batches_train_u_d = x_unlabelled.shape[0] / batch_size_u_d
n_batches_train_l_d = x_labelled.shape[0] / batch_size_l_d
n_batches_train_g = x_unlabelled.shape[0] / batch_size_g
'''
models
'''
# symbols
sym_z_image = T.tile(theano_rng.uniform((z_generated, n_z)), (num_classes, 1))
sym_z_rand = theano_rng.uniform(size=(batch_size_g, n_z))
sym_x_u = T.matrix()
sym_x_u_d = T.matrix()
sym_x_u_g = T.matrix()
sym_x_l = T.matrix()
sym_y = T.ivector()
sym_y_g = T.ivector()
sym_x_eval = T.matrix()
sym_lr = T.scalar()
sym_alpha_cla_g = T.scalar()
sym_alpha_unlabel_entropy = T.scalar()
sym_alpha_unlabel_average = T.scalar()
shared_unlabel = theano.shared(x_unlabelled, borrow=True)
slice_x_u_g = T.ivector()
slice_x_u_d = T.ivector()
slice_x_u_c = T.ivector()
# classifier x2y: p_c(x, y) = p(x) p_c(y | x)
cla_in_x = ll.InputLayer(shape=(None, 28**2))
cla_layers = [cla_in_x]
cla_layers.append(ll.ReshapeLayer(cla_layers[-1], (-1,1,28,28)))
cla_layers.append(convlayer(l=cla_layers[-1], bn=True, dr=0.5, ps=2, n_kerns=32, d_kerns=(5,5), pad='valid', stride=1, W=Normal(0.05), nonlinearity=ln.rectify, name='cla-1'))
cla_layers.append(convlayer(l=cla_layers[-1], bn=True, dr=0, ps=1, n_kerns=64, d_kerns=(3,3), pad='same', stride=1, W=Normal(0.05), nonlinearity=ln.rectify, name='cla-2'))
cla_layers.append(convlayer(l=cla_layers[-1], bn=True, dr=0.5, ps=2, n_kerns=64, d_kerns=(3,3), pad='valid', stride=1, W=Normal(0.05), nonlinearity=ln.rectify, name='cla-3'))
cla_layers.append(convlayer(l=cla_layers[-1], bn=True, dr=0, ps=1, n_kerns=128, d_kerns=(3,3), pad='same', stride=1, W=Normal(0.05), nonlinearity=ln.rectify, name='cla-4'))
cla_layers.append(convlayer(l=cla_layers[-1], bn=True, dr=0, ps=1, n_kerns=128, d_kerns=(3,3), pad='same', stride=1, W=Normal(0.05), nonlinearity=ln.rectify, name='cla-5'))
cla_layers.append(ll.GlobalPoolLayer(cla_layers[-1]))
cla_layers.append(ll.DenseLayer(cla_layers[-1], num_units=num_classes, W=lasagne.init.Normal(1e-2, 0), nonlinearity=ln.softmax, name='cla-6'))
classifier = cla_layers[-1]
# generator y2x: p_g(x, y) = p(y) p_g(x | y) where x = G(z, y), z follows p_g(z)
gen_in_z = ll.InputLayer(shape=(None, n_z))
gen_in_y = ll.InputLayer(shape=(None,))
gen_layers = [gen_in_z]
gen_layers.append(MLPConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-1'))
gen_layers.append(ll.batch_norm(ll.DenseLayer(gen_layers[-1], num_units=500, nonlinearity=ln.softplus, name='gen-2'), name='gen-3'))
gen_layers.append(MLPConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-4'))
gen_layers.append(ll.batch_norm(ll.DenseLayer(gen_layers[-1], num_units=500, nonlinearity=ln.softplus, name='gen-5'), name='gen-6'))
gen_layers.append(MLPConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-7'))
gen_layers.append(nn.l2normalize(ll.DenseLayer(gen_layers[-1], num_units=28**2, nonlinearity=gen_final_non, name='gen-8')))
# discriminator xy2p: test a pair of input comes from p(x, y) instead of p_c or p_g
dis_in_x = ll.InputLayer(shape=(None, 28**2))
dis_in_y = ll.InputLayer(shape=(None,))
dis_layers = [dis_in_x]
dis_layers.append(nn.GaussianNoiseLayer(dis_layers[-1], sigma=noise_D_data, name='dis-1'))
dis_layers.append(MLPConcatLayer([dis_layers[-1], dis_in_y], num_classes, name='dis-2'))
dis_layers.append(nn.DenseLayer(dis_layers[-1], num_units=1000, name='dis-3'))
dis_layers.append(MLPConcatLayer([dis_layers[-1], dis_in_y], num_classes, name='dis-4'))
dis_layers.append(nn.GaussianNoiseLayer(dis_layers[-1], sigma=noise_D, name='dis-5'))
dis_layers.append(MLPConcatLayer([dis_layers[-1], dis_in_y], num_classes, name='dis-6'))
dis_layers.append(nn.DenseLayer(dis_layers[-1], num_units=500, name='dis-7'))
dis_layers.append(nn.GaussianNoiseLayer(dis_layers[-1], sigma=noise_D, name='dis-8'))
dis_layers.append(MLPConcatLayer([dis_layers[-1], dis_in_y], num_classes, name='dis-9'))
dis_layers.append(nn.DenseLayer(dis_layers[-1], num_units=250, name='dis-10'))
dis_layers.append(nn.GaussianNoiseLayer(dis_layers[-1], sigma=noise_D, name='dis-11'))
dis_layers.append(MLPConcatLayer([dis_layers[-1], dis_in_y], num_classes, name='dis-12'))
dis_layers.append(nn.DenseLayer(dis_layers[-1], num_units=250, name='dis-13'))
dis_layers.append(nn.GaussianNoiseLayer(dis_layers[-1], sigma=noise_D, name='dis-14'))
dis_layers.append(MLPConcatLayer([dis_layers[-1], dis_in_y], num_classes, name='dis-15'))
dis_layers.append(nn.DenseLayer(dis_layers[-1], num_units=250, name='dis-16'))
dis_layers.append(nn.GaussianNoiseLayer(dis_layers[-1], sigma=noise_D, name='dis-17'))
dis_layers.append(MLPConcatLayer([dis_layers[-1], dis_in_y], num_classes, name='dis-18'))
dis_layers.append(nn.DenseLayer(dis_layers[-1], num_units=1, nonlinearity=ln.sigmoid, name='dis-19'))
'''
objectives
'''
# outputs
gen_out_x = ll.get_output(gen_layers[-1], {gen_in_y:sym_y_g, gen_in_z:sym_z_rand}, deterministic=False)
cla_out_y_l = ll.get_output(cla_layers[-1], sym_x_l, deterministic=False)
cla_out_y_eval = ll.get_output(cla_layers[-1], sym_x_eval, deterministic=True)
cla_out_y = ll.get_output(cla_layers[-1], sym_x_u, deterministic=False)
cla_out_y_d = ll.get_output(cla_layers[-1], {cla_in_x:sym_x_u_d}, deterministic=False)
cla_out_y_d_hard = cla_out_y_d.argmax(axis=1)
cla_out_y_g = ll.get_output(cla_layers[-1], {cla_in_x:gen_out_x}, deterministic=False)
dis_out_p = ll.get_output(dis_layers[-1], {dis_in_x:T.concatenate([sym_x_l,sym_x_u_d], axis=0),dis_in_y:T.concatenate([sym_y,cla_out_y_d_hard], axis=0)}, deterministic=False)
dis_out_p_g = ll.get_output(dis_layers[-1], {dis_in_x:gen_out_x,dis_in_y:sym_y_g}, deterministic=False)
if objective_flag == 'integrate':
# integrate
dis_out_p_c = ll.get_output(dis_layers[-1],
{dis_in_x:T.repeat(sym_x_u, num_classes, axis=0),
dis_in_y:np.tile(np.arange(num_classes), batch_size_u_c)},
deterministic=False)
elif objective_flag == 'argmax':
# argmax approximation
cla_out_y_hard = cla_out_y.argmax(axis=1)
dis_out_p_c = ll.get_output(dis_layers[-1], {dis_in_x:sym_x_u,dis_in_y:cla_out_y_hard}, deterministic=False)
else:
raise Exception('Unknown objective flags')
image = ll.get_output(gen_layers[-1], {gen_in_y:sym_y_g, gen_in_z:sym_z_image}, deterministic=False) # for generation
accurracy_eval = (lasagne.objectives.categorical_accuracy(cla_out_y_eval, sym_y)) # for evaluation
accurracy_eval = accurracy_eval.mean()
# costs
bce = lasagne.objectives.binary_crossentropy
dis_cost_p = bce(dis_out_p, T.ones(dis_out_p.shape)).mean() # D distincts p
dis_cost_p_g = bce(dis_out_p_g, T.zeros(dis_out_p_g.shape)).mean() # D distincts p_g
gen_cost_p_g = bce(dis_out_p_g, T.ones(dis_out_p_g.shape)).mean() # G fools D
weight_decay_classifier = lasagne.regularization.regularize_layer_params_weighted({cla_layers[-1]:1}, lasagne.regularization.l2) # weight decay
dis_cost_p_c = bce(dis_out_p_c, T.zeros(dis_out_p_c.shape)) # D distincts p_c
cla_cost_p_c = bce(dis_out_p_c, T.ones(dis_out_p_c.shape)) # C fools D
if objective_flag == 'integrate':
# integrate
weight_loss_c = T.reshape(cla_cost_p_c, (-1, num_classes)) * cla_out_y
cla_cost_p_c = T.sum(weight_loss_c, axis=1).mean()
weight_loss_d = T.reshape(dis_cost_p_c, (-1, num_classes)) * cla_out_y
dis_cost_p_c = T.sum(weight_loss_d, axis=1).mean()
elif objective_flag == 'argmax':
# argmax approximation
p = cla_out_y.max(axis=1)
cla_cost_p_c = (cla_cost_p_c*p).mean()
dis_cost_p_c = dis_cost_p_c.mean()
cla_cost_cla = categorical_crossentropy_ssl_separated(predictions_l=cla_out_y_l, targets=sym_y, predictions_u=cla_out_y, weight_decay=weight_decay_classifier, alpha_labeled=alpha_labeled, alpha_unlabeled=sym_alpha_unlabel_entropy, alpha_average=sym_alpha_unlabel_average, alpha_decay=alpha_decay) # classification loss
pretrain_cla_loss = categorical_crossentropy_ssl_separated(predictions_l=cla_out_y_l, targets=sym_y, predictions_u=cla_out_y, weight_decay=weight_decay_classifier, alpha_labeled=alpha_labeled, alpha_unlabeled=pre_alpha_unlabeled_entropy, alpha_average=pre_alpha_average, alpha_decay=alpha_decay) # classification loss
pretrain_cost = pretrain_cla_loss
cla_cost_cla_g = categorical_crossentropy(predictions=cla_out_y_g, targets=sym_y_g)
dis_cost = dis_cost_p + .5*dis_cost_p_g + .5*dis_cost_p_c
gen_cost = .5*gen_cost_p_g
# flag
cla_cost = .5*cla_cost_p_c + alpha_cla*(cla_cost_cla + sym_alpha_cla_g*cla_cost_cla_g)
# fast
cla_cost_fast = .5*cla_cost_p_c + alpha_cla*cla_cost_cla
dis_cost_list=[dis_cost, dis_cost_p, .5*dis_cost_p_g, .5*dis_cost_p_c]
gen_cost_list=[gen_cost]
# flag
cla_cost_list=[cla_cost, .5*cla_cost_p_c, alpha_cla*cla_cost_cla, alpha_cla*sym_alpha_cla_g*cla_cost_cla_g]
# fast
cla_cost_list_fast=[cla_cost_fast, .5*cla_cost_p_c, alpha_cla*cla_cost_cla]
# updates of D
dis_params = ll.get_all_params(dis_layers, trainable=True)
dis_grads = T.grad(dis_cost, dis_params)
dis_updates = lasagne.updates.adam(dis_grads, dis_params, beta1=b1_d, learning_rate=sym_lr)
# updates of G
gen_params = ll.get_all_params(gen_layers, trainable=True)
gen_grads = T.grad(gen_cost, gen_params)
gen_updates = lasagne.updates.adam(gen_grads, gen_params, beta1=b1_g, learning_rate=sym_lr)
# updates of C
cla_params = ll.get_all_params(cla_layers, trainable=True)
cla_grads = T.grad(cla_cost, cla_params)
cla_updates_ = lasagne.updates.adam(cla_grads, cla_params, beta1=b1_c, learning_rate=sym_lr)
# fast updates of C
cla_params = ll.get_all_params(cla_layers, trainable=True)
cla_grads_fast = T.grad(cla_cost_fast, cla_params)
cla_updates_fast_ = lasagne.updates.adam(cla_grads_fast, cla_params, beta1=b1_c, learning_rate=sym_lr)
pre_cla_grad = T.grad(pretrain_cost, cla_params)
pretrain_updates_ = lasagne.updates.adam(pre_cla_grad, cla_params, beta1=0.9, beta2=0.999,
epsilon=1e-8, learning_rate=pre_lr)
######## avg
avg_params = lasagne.layers.get_all_params(cla_layers)
cla_param_avg=[]
for param in avg_params:
value = param.get_value(borrow=True)
cla_param_avg.append(theano.shared(np.zeros(value.shape, dtype=value.dtype),
broadcastable=param.broadcastable,
name=param.name))
cla_avg_updates = [(a,a + 0.01*(p-a)) for p,a in zip(avg_params,cla_param_avg)]
cla_avg_givens = [(p,a) for p,a in zip(avg_params, cla_param_avg)]
cla_updates = cla_updates_.items() + cla_avg_updates
cla_updates_fast = cla_updates_fast_.items() + cla_avg_updates
pretrain_updates = pretrain_updates_.items() + cla_avg_updates
# functions
train_batch_dis = theano.function(inputs=[sym_x_l, sym_y, sym_y_g,
slice_x_u_c, slice_x_u_d, sym_lr],
outputs=dis_cost_list, updates=dis_updates,
givens={sym_x_u: shared_unlabel[slice_x_u_c],
sym_x_u_d: shared_unlabel[slice_x_u_d]})
train_batch_gen = theano.function(inputs=[sym_y_g, sym_lr],
outputs=gen_cost_list, updates=gen_updates)
train_batch_cla = theano.function(inputs=[sym_x_l, sym_y, sym_y_g, slice_x_u_c, sym_alpha_cla_g, sym_lr, sym_alpha_unlabel_entropy, sym_alpha_unlabel_average],
outputs=cla_cost_list, updates=cla_updates,
givens={sym_x_u: shared_unlabel[slice_x_u_c]})
# fast
train_batch_cla_fast = theano.function(inputs=[sym_x_l, sym_y, slice_x_u_c, sym_lr, sym_alpha_unlabel_entropy, sym_alpha_unlabel_average],
outputs=cla_cost_list_fast, updates=cla_updates_fast,
givens={sym_x_u: shared_unlabel[slice_x_u_c]})
sym_index = T.iscalar()
bslice = slice(sym_index*pre_batch_size_uc, (sym_index+1)*pre_batch_size_uc)
pretrain_batch_cla = theano.function(inputs=[sym_x_l, sym_y, sym_index],
outputs=[pretrain_cost], updates=pretrain_updates,
givens={sym_x_u: shared_unlabel[bslice]})
generate = theano.function(inputs=[sym_y_g], outputs=image)
# avg
evaluate = theano.function(inputs=[sym_x_eval, sym_y], outputs=[accurracy_eval], givens=cla_avg_givens)
'''
Load pretrained model
'''
if 'oldmodel' in cfg:
from utils.checkpoints import load_weights
load_weights(cfg['oldmodel'], cla_layers)
for (p, a) in zip(ll.get_all_params(cla_layers), avg_params):
a.set_value(p.get_value())
'''
Pretrain C
'''
for epoch in range(1, 1+pre_num_epoch):
# randomly permute data and labels
p_l = rng.permutation(x_labelled.shape[0])
x_labelled = x_labelled[p_l]
y_labelled = y_labelled[p_l]
p_u = rng.permutation(x_unlabelled.shape[0]).astype('int32')
shared_unlabel.set_value(x_unlabelled[p_u])
for i in range(pretrain_batches_train_uc):
i_c = i % pretrain_batches_train_lc
from_l_c = i_c*pre_batch_size_lc
to_l_c = (i_c+1)*pre_batch_size_lc
pretrain_batch_cla(x_labelled[from_l_c:to_l_c], y_labelled[from_l_c:to_l_c], i)
acc = evaluate(eval_x, eval_y)
acc = acc[0]
print str(epoch) + ':Pretrain accuracy: ' + str(1-acc)
'''
train and evaluate
'''
for epoch in range(1, 1+num_epochs):
start = time.time()
# randomly permute data and labels
p_l = rng.permutation(x_labelled.shape[0])
x_labelled = x_labelled[p_l]
y_labelled = y_labelled[p_l]
p_u = rng.permutation(x_unlabelled.shape[0]).astype('int32')
p_u_d = rng.permutation(x_unlabelled.shape[0]).astype('int32')
p_u_g = rng.permutation(x_unlabelled.shape[0]).astype('int32')
dl = [0.] * len(dis_cost_list)
gl = [0.] * len(gen_cost_list)
cl = [0.] * len(cla_cost_list)
# fast
for i in range(n_batches_train_u_c):
from_u_c = i*batch_size_u_c
to_u_c = (i+1)*batch_size_u_c
i_c = i % n_batches_train_l_c
from_l_c = i_c*batch_size_l_c
to_l_c = (i_c+1)*batch_size_l_c
i_d = i % n_batches_train_l_d
from_l_d = i_d*batch_size_l_d
to_l_d = (i_d+1)*batch_size_l_d
i_d_ = i % n_batches_train_u_d
from_u_d = i_d_*batch_size_u_d
to_u_d = (i_d_+1)*batch_size_u_d
sample_y = np.int32(np.repeat(np.arange(num_classes), batch_size_g/num_classes))
dl_b = train_batch_dis(x_labelled[from_l_d:to_l_d], y_labelled[from_l_d:to_l_d], sample_y, p_u[from_u_c:to_u_c], p_u_d[from_u_d:to_u_d], lr)
for j in xrange(len(dl)):
dl[j] += dl_b[j]
gl_b = train_batch_gen(sample_y, lr)
for j in xrange(len(gl)):
gl[j] += gl_b[j]
# fast
if epoch < epoch_cla_g:
cl_b = train_batch_cla_fast(x_labelled[from_l_c:to_l_c], y_labelled[from_l_c:to_l_c], p_u[from_u_c:to_u_c], lr, alpha_unlabeled_entropy, alpha_average)
cl_b += [0,]
else:
cl_b = train_batch_cla(x_labelled[from_l_c:to_l_c], y_labelled[from_l_c:to_l_c], sample_y, p_u[from_u_c:to_u_c], alpha_cla_g, lr, alpha_unlabeled_entropy, alpha_average)
for j in xrange(len(cl)):
cl[j] += cl_b[j]
for i in xrange(len(dl)):
dl[i] /= n_batches_train_u_c
for i in xrange(len(gl)):
gl[i] /= n_batches_train_u_c
for i in xrange(len(cl)):
cl[i] /= n_batches_train_u_c
if (epoch >= anneal_lr_epoch) and (epoch % anneal_lr_every_epoch == 0):
lr = lr*anneal_lr_factor
t = time.time() - start
line = "*Epoch=%d Time=%.2f LR=%.5f\n" %(epoch, t, lr) + "DisLosses: " + str(dl)+"\nGenLosses: "+str(gl)+"\nClaLosses: "+str(cl)
print line
with open(logfile,'a') as f:
f.write(line + "\n")
# random generation for visualization
if epoch % vis_epoch == 0:
import utils.paramgraphics as paramgraphics
tail = '-'+str(epoch)+'.png'
ran_y = np.int32(np.repeat(np.arange(num_classes), num_classes))
x_gen = generate(ran_y)
x_gen = x_gen.reshape((z_generated*num_classes,-1))
image = paramgraphics.mat_to_img(x_gen.T, dim_input, colorImg=colorImg, scale=generation_scale, save_path=os.path.join(sample_path, 'sample'+tail))
if epoch % eval_epoch == 0:
acc = evaluate(eval_x, eval_y)
acc = acc[0]
print ('ErrorEval=%.5f\n' % (1-acc,))
with open(logfile,'a') as f:
f.write(('ErrorEval=%.5f\n\n' % (1-acc,)))
if epoch % 200 == 0 or epoch == epoch_cla_g-1:
from utils.checkpoints import save_weights
params = ll.get_all_params(dis_layers+cla_layers+gen_layers)
save_weights(os.path.join(outfolder, 'model_epoch' + str(epoch) + '.npy'), params, None)
save_weights(os.path.join(outfolder, 'average.npy'), cla_param_avg, None)