Skip to content

Latest commit

 

History

History
276 lines (211 loc) · 10.8 KB

README.md

File metadata and controls

276 lines (211 loc) · 10.8 KB

Docker Containers for ONNX Runtime

Dockerfiles

Published Microsoft Container Registry (MCR) Images

Use docker pull with any of the images and tags below to pull an image and try for yourself. Note that the CPU, CUDA, and TensorRT images include additional dependencies like miniconda for compatibility with AzureML image deployment.

Example: Run docker pull mcr.microsoft.com/azureml/onnxruntime:latest-cuda to pull the latest released docker image with ONNX Runtime GPU, CUDA, and CUDNN support.

Build Flavor Base Image ONNX Runtime Docker Image tags Latest
Source (CPU) mcr.microsoft.com/azureml/onnxruntime :v0.4.0, :v0.5.0 :latest
CUDA (GPU) mcr.microsoft.com/azureml/onnxruntime :v0.4.0-cuda10.0-cudnn7, :v0.5.0-cuda10.1-cudnn7 :latest-cuda
TensorRT (x86) mcr.microsoft.com/azureml/onnxruntime :v0.4.0-tensorrt19.03, :v0.5.0-tensorrt19.06 :latest-tensorrt
OpenVino (VAD-M) mcr.microsoft.com/azureml/onnxruntime :v0.5.0-openvino-r1.1-vadm :latest-openvino-vadm
OpenVino (MYRIAD) mcr.microsoft.com/azureml/onnxruntime :v0.5.0-openvino-r1.1-myriad :latest-openvino-myriad
Server mcr.microsoft.com/onnxruntime/server :v0.4.0, :v0.5.0 :latest

Building and using Docker images

CPU

Ubuntu 16.04, CPU, Python Bindings

  1. Build the docker image from the Dockerfile in this repository.
docker build -t onnxruntime-source -f Dockerfile.source .
  1. Run the Docker image
docker run -it onnxruntime-source

CUDA

Ubuntu 16.04, CUDA 10.0, CuDNN 7

  1. Build the docker image from the Dockerfile in this repository.
docker build -t onnxruntime-cuda -f Dockerfile.cuda .
  1. Run the Docker image
docker run -it onnxruntime-cuda

nGraph

Public Preview

Ubuntu 16.04, Python Bindings

  1. Build the docker image from the Dockerfile in this repository.
docker build -t onnxruntime-ngraph -f Dockerfile.ngraph .
  1. Run the Docker image
docker run -it onnxruntime-ngraph

TensorRT

Ubuntu 16.04, TensorRT 5.0.2

  1. Build the docker image from the Dockerfile in this repository.
docker build -t onnxruntime-trt -f Dockerfile.tensorrt .
  1. Run the Docker image
docker run -it onnxruntime-trt

OpenVINO

Public Preview

Ubuntu 16.04, Python Bindings

  1. Build the onnxruntime image for one of the accelerators supported below.

    Retrieve your docker image in one of the following ways.

    • To build your docker image, download the OpenVINO online installer version 2019 R1.1 for Linux from this link and copy the OpenVINO tar file to the same directory before building the Docker image. The online installer size is 16MB and the components needed for the accelerators are mentioned in the dockerfile. Providing the docker build argument DEVICE enables the onnxruntime build for that particular device. You can also provide arguments ONNXRUNTIME_REPO and ONNXRUNTIME_BRANCH to test that particular repo and branch. Default repository is http://github.com/microsoft/onnxruntime and default branch is master.
      docker build -t onnxruntime --build-arg DEVICE=$DEVICE .
      
    • Pull the official image from DockerHub.
  2. DEVICE: Specifies the hardware target for building OpenVINO Execution Provider. Below are the options for different Intel target devices.

    Device Option Target Device
    CPU_FP32 Intel CPUs
    GPU_FP32 Intel Integrated Graphics
    GPU_FP16 Intel Integrated Graphics
    MYRIAD_FP16 Intel MovidiusTM USB sticks
    VAD-M_FP16 Intel Vision Accelerator Design based on MovidiusTM MyriadX VPUs

OpenVINO on CPU

  1. Retrieve your docker image in one of the following ways.

    • Build the docker image from the DockerFile in this repository.

      docker build -t onnxruntime-cpu --build-arg DEVICE=CPU_FP32 --network host .
      
    • Pull the official image from DockerHub.

      # Will be available with next release
      
  2. Run the docker image

     docker run -it onnxruntime-cpu
    

OpenVINO on GPU

  1. Retrieve your docker image in one of the following ways.

    • Build the docker image from the DockerFile in this repository.
       docker build -t onnxruntime-gpu --build-arg DEVICE=GPU_FP32 --network host .
      
    • Pull the official image from DockerHub.
        # Will be available with next release
      
  2. Run the docker image

    docker run -it --device /dev/dri:/dev/dri onnxruntime-gpu:latest
    

OpenVINO on Myriad VPU Accelerator

  1. Retrieve your docker image in one of the following ways.
    • Build the docker image from the DockerFile in this repository.
       docker build -t onnxruntime-myriad --build-arg DEVICE=MYRIAD_FP16 --network host .
      
    • Pull the official image from DockerHub.
       # Will be available with next release
      
  2. Install the Myriad rules drivers on the host machine according to the reference in here
  3. Run the docker image by mounting the device drivers
    docker run -it --network host --privileged -v /dev:/dev  onnxruntime-myriad:latest
    
    

OpenVINO on VAD-M Accelerator Version

  1. Retrieve your docker image in one of the following ways.
    • Build the docker image from the DockerFile in this repository.
       docker build -t onnxruntime-vadr --build-arg DEVICE=VAD-M_FP16 --network host .
      
    • Pull the official image from DockerHub.
       # Will be available with next release
      
  2. Install the HDDL drivers on the host machine according to the reference in here
  3. Run the docker image by mounting the device drivers
    docker run -it --device --mount type=bind,source=/var/tmp,destination=/var/tmp --device /dev/ion:/dev/ion  onnxruntime-hddl:latest
    
    

ARM 32v7

Public Preview

The Dockerfile used in these instructions specifically targets Raspberry Pi 3/3+ running Raspbian Stretch. The same approach should work for other ARM devices, but may require some changes to the Dockerfile such as choosing a different base image (Line 0: FROM ...).

  1. Install DockerCE on your development machine by following the instructions here

  2. Create an empty local directory

    mkdir onnx-build
    cd onnx-build
  3. Save the Dockerfile to your new directory

  4. Run docker build

    This will build all the dependencies first, then build ONNX Runtime and its Python bindings. This will take several hours.

    docker build -t onnxruntime-arm32v7 -f Dockerfile.arm32v7 .
  5. Note the full path of the .whl file

    • Reported at the end of the build, after the # Build Output line.
    • It should follow the format onnxruntime-0.3.0-cp35-cp35m-linux_armv7l.whl, but version number may have changed. You'll use this path to extract the wheel file later.
  6. Check that the build succeeded

    Upon completion, you should see an image tagged onnxruntime-arm32v7 in your list of docker images:

    docker images
  7. Extract the Python wheel file from the docker image

    (Update the path/version of the .whl file with the one noted in step 5)

    docker create -ti --name onnxruntime_temp onnxruntime-arm32v7 bash
    docker cp onnxruntime_temp:/code/onnxruntime/build/Linux/MinSizeRel/dist/onnxruntime-0.3.0-cp35-cp35m-linux_armv7l.whl .
    docker rm -fv onnxruntime_temp

    This will save a copy of the wheel file, onnxruntime-0.3.0-cp35-cp35m-linux_armv7l.whl, to your working directory on your host machine.

  8. Copy the wheel file (onnxruntime-0.3.0-cp35-cp35m-linux_armv7l.whl) to your Raspberry Pi or other ARM device

  9. On device, install the ONNX Runtime wheel file

    sudo apt-get update
    sudo apt-get install -y python3 python3-pip
    pip3 install numpy
    
    # Install ONNX Runtime
    # Important: Update path/version to match the name and location of your .whl file
    pip3 install onnxruntime-0.3.0-cp35-cp35m-linux_armv7l.whl
  10. Test installation by following the instructions here

Nuphar

Public Preview

Ubuntu 16.04, Python Bindings

  1. Build the docker image from the Dockerfile in this repository.
docker build -t onnxruntime-nuphar -f Dockerfile.nuphar .
  1. Run the Docker image
docker run -it onnxruntime-nuphar

ONNX Runtime Server

Public Preview

Ubuntu 16.04

  1. Build the docker image from the Dockerfile in this repository
docker build -t {docker_image_name} -f Dockerfile.server .
  1. Run the ONNXRuntime server with the image created in step 1
docker run -v {localModelAbsoluteFolder}:{dockerModelAbsoluteFolder} -p {your_local_port}:8001 {imageName} --model_path {dockerModelAbsolutePath}
  1. Send HTTP requests to the container running ONNX Runtime Server

Send HTTP requests to the docker container through the binding local port. Here is the full usage document.

curl  -X POST -d "@request.json" -H "Content-Type: application/json" http://0.0.0.0:{your_local_port}/v1/models/mymodel/versions/3:predict