Skip to content

Latest commit

 

History

History
147 lines (121 loc) · 5.54 KB

OpenVINO-ExecutionProvider.md

File metadata and controls

147 lines (121 loc) · 5.54 KB

OpenVINO Execution Provider

OpenVINO Execution Provider enables deep learning inference on Intel CPUs, Intel integrated GPUs and Intel® MovidiusTM Vision Processing Units (VPUs). Please refer to this page for details on the Intel hardware supported.

Build

For build instructions, please see the BUILD page.

ONNX Layers supported using OpenVINO

The table below shows the ONNX layers supported using OpenVINO Execution Provider and the mapping between ONNX layers and OpenVINO layers. The below table also lists the Intel hardware support for each of the layers. CPU refers to Intel® Atom, Core, and Xeon processors. GPU refers to the Intel Integrated Graphics. VPU refers to USB based Intel® MovidiusTM VPUs as well as Intel® Vision accelerator Design with Intel Movidius TM MyriadX VPU. FPGA refers to Intel® Vision Accelerator Design with an Intel® Arria® 10 FPGA.

ONNX Layers OpenVINO Layers CPU GPU VPU FPGA
Add Eltwise (operation=sum) Yes Yes Yes Yes
AveragePool Pooling(pool_method=avg) Yes Yes Yes Yes
BatchNormalization Scaleshift (can be fused into Convlution or Fully Connected) Yes Yes Yes Yes
Concat Concat Yes Yes Yes Yes
Conv Convolution Yes Yes Yes Yes
Dropout Ignored Yes Yes Yes Yes
Flatten Reshape Yes Yes Yes No
Gemm FullyConnected Yes Yes Yes Yes
GlobalAveragePool Pooling Yes Yes Yes Yes
Identity Ignored Yes Yes Yes Yes
ImageScaler ScaleShift Yes Yes Yes Yes
LRN Norm Yes Yes Yes Yes
MatMul FullyConnected Yes Yes* No Yes
MaxPool Pooling(pool_method=max) Yes Yes Yes Yes
Mul Eltwise(operation=mul) Yes Yes Yes No
Relu ReLU Yes Yes Yes Yes
Reshape Reshape Yes Yes Yes No
Softmax SoftMax Yes Yes Yes No
Sum Eltwise(operation=sum) Yes Yes Yes Yes
Transpose Permute Yes Yes Yes No
UnSqueeze Reshape Yes Yes Yes No
LeakyRelu ReLU Yes Yes Yes Yes

*MatMul is supported in GPU only when the following layer is an Add layer in the topology.

Topology Support

Below topologies are supported from ONNX open model zoo using OpenVINO Execution Provider

Image Classification Networks

Topology CPU GPU VPU FPGA
bvlc_alexnet Yes Yes Yes Yes***
bvlc_googlenet Yes Yes Yes Yes***
bvlc_reference_caffenet Yes Yes Yes Yes***
bvlc_reference_rcnn_ilsvrc13 Yes Yes Yes Yes***
densenet121 Yes Yes Yes Yes***
Inception_v1 Yes Yes Yes** Yes***
Inception_v2 Yes Yes Yes Yes***
Shufflenet Yes Yes Yes Yes***
Zfnet512 Yes Yes Yes Yes***
Squeeznet 1.1 Yes Yes Yes Yes***
Resnet18v1 Yes Yes Yes Yes***
Resnet34v1 Yes Yes Yes Yes***
Resnet50v1 Yes Yes Yes Yes***
Resnet101v1 Yes Yes Yes Yes***
Resnet152v1 Yes Yes Yes Yes***
Resnet18v2 Yes Yes Yes Yes***
Resnet34v2 Yes Yes Yes Yes***
Resnet50v2 Yes Yes Yes Yes***
Resnet101v2 Yes Yes Yes Yes***
Resnet152v2 Yes Yes Yes Yes***
Mobilenetv2 Yes Yes Yes Yes***
vgg16 Yes Yes Yes Yes***
vgg19 Yes Yes Yes Yes***

Image Recognition Networks

Topology CPU GPU VPU FPGA
MNIST Yes Yes Yes** Yes***

**Inception_v1 and MNIST are supported in OpenVINO R1.1 and are not supported in OpenVINO R5.0.1.

Object Detection Networks

Topology CPU GPU VPU FPGA
TinyYOLOv2 Yes Yes Yes Yes***
ResNet101_DUC_HDC Yes No No Yes***

***FPGA only runs in HETERO mode wherein the layers that are not supported on FPGA fall back to OpenVINO CPU.

Application code changes for VAD-M performance scaling

VAD-M has 8 VPUs and is suitable for applications that require multiple inferences to run in parallel. We use batching approach for performance scaling on VAD-M.

Below python code snippets provide sample classification code to batch input images, load a model and process the output results.

import onnxruntime as rt
from onnxruntime import get_device
import os
import os.path
import sys
import cv2
import numpy
import time
import glob

Load the input onnx model

sess = rt.InferenceSession(str(sys.argv[1]))
print("\n")

Preprocessing input images

for i in range(iters):
   y = None
   images = [cv2.imread(file) for file in glob.glob(str(sys.argv[2])+'/*.jpg')]
   for img in images:
     # resizing the image
     img = cv2.resize(img, (224,224))
     # convert image to numpy
     x = numpy.asarray(img).astype(numpy.float32)
     x = numpy.transpose(x, (2,0,1))
     # expand the dimension and batch the images
     x = numpy.expand_dims(x,axis=0)
     if y is None:
        y = x
     else:
        y = numpy.concatenate((y,x), axis=0)

Start Inference

   res = sess.run([sess.get_outputs()[0].name], {sess.get_inputs()[0].name: y})

Post-processing output results

   print("Output probabilities:")
   i = 0
   for k in range(batch_size):
       for prob in res[0][k][0]:
          print("%d : %7.4f" % (i, prob))