forked from onnx/tensorflow-onnx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_pretrained_models.yaml
305 lines (277 loc) · 8.12 KB
/
run_pretrained_models.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#
# simple models for basic functional test
#
benchtf-fc:
model: tests/models/fc-layers/frozen.pb
input_get: get_ramp
inputs:
"X:0": [1, 784]
outputs:
- output:0
benchtf-conv:
model: tests/models/conv-layers/frozen.pb
input_get: get_ramp
inputs:
"X:0": [1, 784]
outputs:
- output:0
benchtf-convbn:
disabled: true # some if from training isn't removed
model: tests/models/convbn-layers/frozen.pb
input_get: get_ramp
inputs:
"X:0": [1, 784]
outputs:
- output:0
benchtf-ae0:
model: tests/models/ae0/frozen.pb
input_get: get_ramp
inputs:
"X:0": [1, 784]
outputs:
- output:0
benchtf-lstm:
disabled: true
model: tests/models/lstm/frozen.pb
input_get: get_ramp
inputs:
"X:0": [1, 784]
outputs:
- output:0
benchtf-gru:
disabled: true
model: tests/models/gru/frozen.pb
input_get: get_ramp
inputs:
"X:0": [1, 784]
"keep_prob:0": [1]
outputs:
- output:0
##
## standard image nets
##
inception_v3_slim:
url: https://storage.googleapis.com/download.tensorflow.org/models/inception_v3_2016_08_28_frozen.pb.tar.gz
model: inception_v3_2016_08_28_frozen.pb
input_get: get_beach
inputs:
"input:0": [1, 299, 299, 3]
outputs:
- InceptionV3/Predictions/Softmax:0
rtol: 0.02
atol: 0.000001
googlenet_v1_nonslim:
disabled: true
url: https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
model: tensorflow_inception_graph.pb
input_get: get_beach
inputs:
"input:0": [1, 224, 224, 3]
outputs:
- softmax2:0
googlenet_resnet_v2:
url: https://storage.googleapis.com/download.tensorflow.org/models/inception_resnet_v2_2016_08_30_frozen.pb.tar.gz
model: inception_resnet_v2_2016_08_30_frozen.pb
input_get: get_beach
inputs:
"input:0": [1, 299, 299, 3]
outputs:
- InceptionResnetV2/Logits/Predictions:0
rtol: 0.05
googlenet_v1_slim:
url: https://storage.googleapis.com/download.tensorflow.org/models/inception_v1_2016_08_28_frozen.pb.tar.gz
model: inception_v1_2016_08_28_frozen.pb
input_get: get_beach
inputs:
"input:0": [1, 224, 224, 3]
outputs:
- InceptionV1/Logits/Predictions/Softmax:0
rtol: 0.05
googlenet_v2_slim:
# FIXME: fails because of 0.29% missmatch
disabled: true
url: https://storage.googleapis.com/download.tensorflow.org/models/inception_v2_2016_08_28_frozen.pb.tar.gz
model: inception_v2_2016_08_28_frozen.pb
input_get: get_beach
inputs:
"input:0": [1, 224, 224, 3]
outputs:
- InceptionV2/Predictions/Softmax:0
rtol: 0.05
atol: 0.00005
googlenet_v4_slim:
url: https://storage.googleapis.com/download.tensorflow.org/models/inception_v4_2016_09_09_frozen.pb.tar.gz
model: inception_v4_2016_09_09_frozen.pb
input_get: get_beach
inputs:
"input:0": [1, 299, 299, 3]
outputs:
- InceptionV4/Logits/Predictions:0
rtol: 0.1
mobilenet_v2_1.4_224:
# fails because of input[1] in squeeze is 0 instead of 1
disabled: true
url: https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.4_224.tgz
model: mobilenet_v2_1.4_224_frozen.pb
input_get: get_beach
force_input_shape: true
inputs:
"input:0": [1, 224, 224, 3]
outputs:
- MobilenetV2/Predictions/Reshape_1:0
mobilenet_v1_100_224:
url: https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_1.0_224_frozen.tgz
model: mobilenet_v1_1.0_224/frozen_graph.pb
input_get: get_beach
inputs:
"input:0": [1, 224, 224, 3]
outputs:
- MobilenetV1/Predictions/Softmax:0
mobilenet_v1_75_192:
url: https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_0.75_192_frozen.tgz
model: mobilenet_v1_0.75_192/frozen_graph.pb
input_get: get_beach
inputs:
"input:0": [1, 192, 192, 3]
outputs:
- MobilenetV1/Predictions/Softmax:0
tiny-yolo:
# works but local file
disabled: true
model: c:/src/darkflow/built_graph/tiny-yolo.pb
input_get: get_beach
inputs:
"input:0": [1, 416, 416, 3]
outputs:
- output:0
rtol: 0.6
nasnet-a_mobile_224:
# has only checkpoint format
disabled: true
url: https://storage.googleapis.com/download.tensorflow.org/models/nasnet-a_mobile_04_10_2017.tar.gz
model: fixme
input_get: get_beach
inputs:
"input:0": [1, 416, 416, 3]
outputs:
- output:0
vgg-16:
# has only checkpoint format
disabled: true
url: http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz
model: fixme
input_get: get_beach
inputs:
"input:0": [1, 416, 416, 3]
outputs:
- output:0
resnet50_v2_nchw:
skip_tensorflow: true # tensorflow fails: Default MaxPoolingOp only supports NHWC on device type CPU
model_type: saved_model
url: http://download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v2_fp32_savedmodel_NCHW.tar.gz
model: resnet_v2_fp32_savedmodel_NCHW/1538687196
input_get: get_beach
inputs:
"input_tensor:0": [64, 224, 224, 3]
outputs:
- ArgMax:0
- softmax_tensor:0
resnet50_v2_nhwc:
disabled: true # FIXME: numerical results are correct but shape=(64,) for tf and (64,1) for lotus
model_type: saved_model
url: http://download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v2_fp32_savedmodel_NHWC.tar.gz
model: resnet_v2_fp32_savedmodel_NHWC/1538687283
input_get: get_beach
inputs:
"input_tensor:0": [64, 224, 224, 3]
outputs:
- ArgMax:0
- softmax_tensor:0
resnet50_fp16_v2:
disabled: true # FIXME: need to handle float16 constants
model_type: saved_model
url: http://download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v2_fp16_savedmodel_NHWC.tar.gz
model: resnet_v2_fp16_savedmodel_NHWC/1538686978
input_get: get_beach
inputs:
"input_tensor:0": [64, 224, 224, 3]
outputs:
- ArgMax:0
- softmax_tensor:0
resnet50_v1:
disabled: true # works, disabled because its nearly the same as resnet50_v2_nchw
skip_tensorflow: true # tensorflow fails: Default MaxPoolingOp only supports NHWC on device type CPU
model_type: saved_model
url: http://download.tensorflow.org/models/official/20180601_resnet_v1_imagenet_savedmodel.tar.gz
model: 20180601_resnet_v1_imagenet_savedmodel/1527888778
input_get: get_beach
inputs:
"input_tensor:0": [128, 224, 224, 3]
outputs:
- ArgMax:0
- softmax_tensor:0
#
# models that will never work
#
style-transfer:
# quantitized model
disabled: true
url: https://storage.googleapis.com/download.tensorflow.org/models/stylize_v1.zip
model: stylize_quantized.pb
input_get: get_beach
inputs:
"input:0": [1, 416, 416, 3]
outputs:
- output:0
ssd_mobilenet_v1_coco:
# issues with control flow
disabled: true
url: http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2017_11_17.tar.gz
model: ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb
input_get: get_beach
inputs:
"image_tensor:0": [1, 224, 224, 3]
outputs:
- detection_boxes:0
- detection_scores:0
- num_detections:0
- detection_classes:0
ssd_mobilenet_v2_coco:
# issues with control flow
disabled: true
url: http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_coco_2018_03_29.tar.gz
model: ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb
input_get: get_beach
inputs:
"image_tensor:0": [1, 224, 224, 3]
outputs:
- detection_boxes:0
- detection_scores:0
- num_detections:0
- detection_classes:0
ssdlite_mobilenet_v2_coco:
# issues with control flow
disabled: true
url: http://download.tensorflow.org/models/object_detection/ssdlite_mobilenet_v2_coco_2018_05_09.tar.gz
model: ssdlite_mobilenet_v2_coco_2018_05_09/frozen_inference_graph.pb
input_get: get_beach
inputs:
"image_tensor:0": [1, 224, 224, 3]
outputs:
- detection_boxes:0
- detection_scores:0
- num_detections:0
- detection_classes:0
ssd_inception_v2_coco:
# issues with control flow
disabled: true
url: http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2017_11_17.tar.gz
model: ssd_inception_v2_coco_2017_11_17/frozen_inference_graph.pb
input_get: get_beach
inputs:
"image_tensor:0": [1, 224, 224, 3]
outputs:
- detection_boxes:0
- detection_scores:0
- num_detections:0
- detection_classes:0