-
Notifications
You must be signed in to change notification settings - Fork 11
/
UnitBox.py
176 lines (125 loc) · 5.96 KB
/
UnitBox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import tensorflow as tf
import tensorlayer as tl
from VGG16 import vgg_16, vgg16_init_weights
import numpy as np
import cv2
from IOULoss import IOULoss
from loadmat import get_train_list
import os
_EPSILON = 10e-8
def Model(net_in):
in_shape = tf.shape(net_in.outputs)
vgg16 = vgg_16(net_in, include_top=False)
pool4 = tl.layers.get_layers_with_name(vgg16, 'pool4')[0]
pool4 = tl.layers.InputLayer(pool4, name='pool4_1')
pool5 = tl.layers.get_layers_with_name(vgg16, 'pool5')[0]
pool5 = tl.layers.InputLayer(pool5, name='pool5_1')
# score
score_conv = tl.layers.Conv2dLayer(pool4,
shape=[3, 3, 512, 1],
act=tl.act.identity,
padding='SAME',
name='score_conv')
score = tl.layers.DeConv2dLayer(score_conv,
shape=[32, 32, 1, 1],
strides=[1, 16, 16, 1],
output_shape=[in_shape[0], in_shape[1], in_shape[2], 1],
act=tl.act.identity,
padding='SAME',
W_init=tl.layers.deconv2d_bilinear_upsampling_initializer([32, 32, 1, 1]),
b_init=None,
name='score')
prob = tf.nn.sigmoid(score.outputs)
# bounding box
bbox_conv = tl.layers.Conv2dLayer(pool5,
shape=[3, 3, 512, 4],
act=tl.act.identity,
padding='SAME',
name='bbox_conv')
bbox = tl.layers.DeConv2dLayer(bbox_conv,
shape=[64, 64, 4, 4],
strides=[1, 32, 32, 1],
output_shape=[in_shape[0], in_shape[1], in_shape[2], 4],
act=tf.nn.relu,
padding='SAME',
W_init=tl.layers.deconv2d_bilinear_upsampling_initializer([64, 64, 4, 4]),
b_init=None,
name='bbox')
model = {}
model['score'] = score.outputs
model['prob'] = prob
model['bbox'] = bbox.outputs
return model
def _to_tensor(x, dtype):
x = tf.convert_to_tensor(x, dtype)
return x
def loss_function(sc_pred, sc_true, bbox_pred, bbox_true):
score_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=sc_pred,
labels=sc_true))
bbox_loss = IOULoss(bbox_pred, bbox_true)
l2 = 0.
for w in tl.layers.get_variables_with_name('W_conv2d', train_only=True, printable=False):
l2 += tf.contrib.layers.l2_regularizer(0.0005)(w)
for w in tl.layers.get_variables_with_name('W_deconv2d', train_only=True, printable=False):
l2 += tf.contrib.layers.l2_regularizer(0.0005)(w)
return 0.01*score_loss + bbox_loss + l2
if __name__ == "__main__":
x = tf.placeholder(tf.float32, [None, None, None, 3])
sc_ = tf.placeholder(tf.float32, shape=[None, None, None, 1], name='sc_')
bbox_ = tf.placeholder(tf.float32, shape=[None, None, None, 4], name='bbox_')
net_in = tl.layers.InputLayer(x, name='input_layer')
model = Model(net_in)
sess = tf.InteractiveSession()
tl.layers.print_all_variables()
loss = loss_function(model['score'], sc_, model['bbox'], bbox_)
#train_op = tf.train.MomentumOptimizer(learning_rate=1e-7,
# momentum=0.9).minimize(loss)
train_op = tf.train.AdamOptimizer(learning_rate=1e-6).minimize(loss)
tl.layers.initialize_global_variables(sess)
vgg16_init_weights(sess, include_top=False)
train_list = get_train_list()
print(len(train_list.keys()))
image_path = '../WiderFace'
saver = tf.train.Saver()
for epoch in range(20):
total_loss = 0.
count = 0
for img_name, bboxes in train_list.items():
path = os.path.join(image_path, img_name)
im = cv2.imread(path)
ratio = 1024. / np.maximum(im.shape[0], im.shape[1])
nw = int(im.shape[1] * ratio)
nh = int(im.shape[0] * ratio)
im = cv2.resize(im, (nw, nh), interpolation=cv2.INTER_NEAREST)
l_score = np.zeros((nh, nw), np.float32)
l_bbox = np.zeros((nh, nw, 4), np.float32)
for bbox in bboxes:
bbox = np.array(bbox) * ratio
x1, y1, w, h = int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])
x1 = np.maximum(x1, 0)
y1 = np.maximum(y1, 0)
x2 = np.minimum(x1+w, nw)
y2 = np.minimum(y1+h, nh)
l_score[y1:y2, x1:x2] = 1.
for yy in range(y1, y2):
l_bbox[yy, x1:x2, 0] = yy - y1
l_bbox[yy, x1:x2, 1] = y2 - yy
for xx in range(x1, x2):
l_bbox[y1:y2, xx, 2] = xx - x1
l_bbox[y1:y2, xx, 3] = x2 - xx
im = np.expand_dims(im, axis=0)
l_score = np.expand_dims(l_score, axis=0)
l_score = np.expand_dims(l_score, axis=3)
l_bbox = np.expand_dims(l_bbox, axis=0)
l_bbox /= 64.
_, loss_val = sess.run([train_op, loss], feed_dict={x: im,
sc_: l_score,
bbox_: l_bbox})
# tl.files.save_npz(model['bbox'].all_params, name='model.npz')
total_loss += loss_val
count += 1
if count % 20 == 0:
print("Epoch [%d] average Loss [%d] : %f" % (epoch, count, total_loss / count))
saver.save(sess, 'model/model_f.ckpt', global_step=epoch)
sess.close()