forked from KarenUllrich/Pytorch-Backprojection
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy paththird_party.py
220 lines (179 loc) · 6.78 KB
/
third_party.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python
# -*- coding: utf-8 -*-
""" A collection of functions useful for loading and preprocessing microscope input.
This code are excerpts from Marcus Marcus Brubaker's github:
https://github.com/mbrubake/cryoem-cvpr2015
Please consider other licensing conditions.
Author: Marcus Brubaker, 2015
"""
import numpy as n
try:
import pyfftw
fftmod = pyfftw.interfaces.numpy_fft
pyfftw.interfaces.cache.enable()
# install like so: https://dranek.com/blog/2014/Feb/conda-binstar-and-fftw/
# print "LOADED FFTW"
USINGFFTW = True
import multiprocessing
fft_threads = multiprocessing.cpu_count()
except:
fftmod = n.fft
USINGFFTW = False
print("WARNING: COULD NOT LOAD FFTW! USING NUMPY.")
fft_threads = None
real_t = n.float32
complex_t = n.complex64
def readMRCheader(fname):
hdr = None
with open(fname) as f:
hdr = {}
header = n.fromfile(f, dtype=n.int32, count=256)
header_f = header.view(n.float32)
[hdr['nx'], hdr['ny'], hdr['nz'], hdr['datatype']] = header[:4]
[hdr['xlen'], hdr['ylen'], hdr['zlen']] = header_f[10:13]
# print "Nx %d Ny %d Nz %d Type %d" % (nx, ny, nz, datatype)
return hdr
def readMRC(fname, inc_header=False):
hdr = readMRCheader(fname)
nx = hdr['nx']
ny = hdr['ny']
nz = hdr['nz']
datatype = hdr['datatype']
with open(fname) as f:
f.seek(1024) # seek to start of data
if datatype == 0:
data = n.reshape(n.fromfile(f, dtype='int8', count=nx * ny * nz), (nx, ny, nz), order='F')
elif datatype == 1:
data = n.reshape(n.fromfile(f, dtype='int16', count=nx * ny * nz), (nx, ny, nz), order='F')
elif datatype == 2:
data = n.reshape(n.fromfile(f, dtype='float32'), (nx, ny, nz), order='F')
else:
assert False, 'Unsupported MRC datatype: {0}'.format(datatype)
if inc_header:
return data, hdr
else:
return data
def compute_premultiplier(N, kernel, kernsize, scale=512):
krange = N / 2
koffset = (N / 2) * scale
x = n.arange(-scale * krange, scale * krange) / float(scale)
if kernel == 'lanczos':
a = kernsize / 2
k = n.sinc(x) * n.sinc(x / a) * (n.abs(x) <= a)
elif kernel == 'sinc':
a = kernsize / 2.0
k = n.sinc(x) * (n.abs(x) <= a)
elif kernel == 'linear':
assert kernsize == 2
k = n.maximum(0.0, 1 - n.abs(x))
elif kernel == 'quad':
assert kernsize == 3
k = (n.abs(x) <= 0.5) * (1 - 2 * x ** 2) + ((n.abs(x) < 1) * (n.abs(x) > 0.5)) * 2 * (1 - n.abs(x)) ** 2
else:
assert False, 'Unknown kernel type'
sk = n.fft.fftshift(n.fft.ifft(n.fft.ifftshift(k))).real
premult = 1.0 / (N * sk[int(koffset - krange):int(koffset + krange)])
return premult
""" Convert real-space M to (unitary) Fourier space """
def real_to_fspace(M, axes=None, threads=None):
if USINGFFTW:
if threads is None:
threads = fft_threads
ret = n.require(n.fft.fftshift(fftmod.fftn(n.fft.fftshift(M, axes=axes), \
axes=axes, threads=threads), \
axes=axes), \
dtype=complex_t)
else:
ret = n.require(n.fft.fftshift(fftmod.fftn(n.fft.fftshift(M, axes=axes), \
axes=axes), \
axes=axes), \
dtype=complex_t)
ret = n.require(n.fft.fftshift(fftmod.fftn(n.fft.fftshift(M))),
dtype=complex_t)
# nrm is the scaling factor needed to make an unnormalized FFT a
# unitary transform
if axes is None:
nrm = 1.0 / n.sqrt(n.prod(M.shape))
else:
nrm = 1.0 / n.sqrt(n.prod(n.array(M.shape)[n.array(axes)]))
ret *= nrm
return ret
""" Convert unitary Fourier space fM to real space """
def fspace_to_real(fM, axes=None, threads=None):
if USINGFFTW:
if threads is None:
threads = fft_threads
ret = n.require(n.fft.ifftshift(fftmod.ifftn(n.fft.ifftshift(fM, axes=axes), \
axes=axes, threads=threads), \
axes=axes).real, \
dtype=real_t)
else:
ret = n.require(n.fft.ifftshift(fftmod.ifftn(n.fft.ifftshift(fM, axes=axes), \
axes=axes), \
axes=axes).real, \
dtype=real_t)
# nrm is the scaling factor needed to make an unnormalized FFT a
# unitary transform
if axes is None:
nrm = n.sqrt(n.prod(fM.shape))
else:
nrm = n.sqrt(n.prod(n.array(fM.shape)[n.array(axes)]))
ret *= nrm
return ret
def gencoords_base(N, d):
x = n.arange(-N / 2, N / 2, dtype=n.float32)
c = x.copy()
for i in range(1, d):
c = n.column_stack([n.repeat(c, N, axis=0), n.tile(x, N ** i)])
return c
def gencoords(N, d, rad=None, truncmask=False, trunctype='circ'):
""" generate coordinates of all points in an NxN..xN grid with d dimensions
coords in each dimension are [-N/2, N/2)
N should be even"""
if not truncmask:
_, truncc, _ = gencoords(N, d, rad, True)
return truncc
c = gencoords_base(N, d)
if rad is not None:
if trunctype == 'circ':
r2 = n.sum(c ** 2, axis=1)
trunkmask = r2 < (rad * N / 2.0) ** 2
elif trunctype == 'square':
r = n.max(n.abs(c), axis=1)
trunkmask = r < (rad * N / 2.0)
truncc = c[trunkmask, :]
else:
trunkmask = n.ones((c.shape[0],), dtype=n.bool8)
truncc = c
return c, truncc, trunkmask
def window(v, func='hanning', params=None):
""" applies a windowing function to the 3D volume v (inplace, as reference) """
N = v.shape[0]
D = v.ndim
if any([d != N for d in list(v.shape)]) or D != 3:
raise Exception("Error: Volume is not Cube.")
def apply_seperable_window(v, w):
v *= n.reshape(w, (-1, 1, 1))
v *= n.reshape(w, (1, -1, 1))
v *= n.reshape(w, (1, 1, -1))
if func == "hanning":
w = n.hanning(N)
apply_seperable_window(v, w)
elif func == 'hamming':
w = n.hamming(N)
apply_seperable_window(v, w)
elif func == 'gaussian':
raise Exception('Unimplimented')
elif func == 'circle':
c = gencoords(N, 3)
if params == None:
r = N / 2 - 1
else:
r = params[0] * (N / 2 * 1)
v *= (n.sum(c ** 2, 1) < (r ** 2)).reshape((N, N, N))
elif func == 'box':
v[:, 0, 0] = 0.0
v[0, :, 0] = 0.0
v[0, 0, :] = 0.0
else:
raise Exception("Error: Window Type Not Supported")