forked from XzrTGMu/twin-nphard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmwis_gcn_train_zoo.py
executable file
·204 lines (179 loc) · 6.79 KB
/
mwis_gcn_train_zoo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# python3
# Make this standard template for testing and training
from __future__ import division
from __future__ import print_function
import sys
import os
import shutil
sys.path.append( '%s/gcn' % os.path.dirname(os.path.realpath(__file__)) )
import time
import random
import scipy.io as sio
import numpy as np
import scipy.sparse as sp
from multiprocessing import Queue
from copy import deepcopy
from scipy.stats.stats import pearsonr, linregress
import tensorflow as tf
from collections import deque
import warnings
warnings.filterwarnings('ignore')
from gcn.utils import *
# Settings (FLAGS)
from runtime_config import flags, FLAGS
from heuristics import *
flags.DEFINE_string('test_datapath', './data/ER_Graph_Uniform_NP20_test', 'test dataset')
flags.DEFINE_integer('ntrain', 1, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('nvalid', 100, 'Number of outputs.')
from mwis_gcn_call_twin import DQNAgent
dqn_agent = DQNAgent(FLAGS, 5000)
# test data path
data_path = FLAGS.datapath
test_datapath = FLAGS.test_datapath
val_mat_names = sorted(os.listdir(data_path))
test_mat_names = sorted(os.listdir(test_datapath))
# Some preprocessing
noout = min(FLAGS.diver_num, FLAGS.diver_out) # number of outputs
time_limit = FLAGS.timeout # time limit for searching
backoff_thresh = 1 - FLAGS.backoff_prob
num_supports = 1 + FLAGS.max_degree
nsr = np.power(10.0, -FLAGS.snr_db/20.0)
from directory import create_result_folder, find_model_folder
model_origin = find_model_folder(FLAGS, 'dqn')
# use gpu 0
os.environ['CUDA_VISIBLE_DEVICES'] = str(0)
# Initialize session
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
try:
dqn_agent.load(model_origin)
except:
print("Unable to load {}".format(model_origin))
best_IS_vec = []
loss_vec = []
results = pd.DataFrame([], columns=["data", "p"])
csvname = "./output/{}_{}_train_zoo.csv".format(model_origin.split('/')[-1], test_datapath.split('/')[-1])
epislon_reset = [5, 10, 15, 20]
epislon_val = 1.0
eval_size = FLAGS.nvalid
n_samples = FLAGS.ntrain
best_ratio = 1.0
last_ap = 1.0
batch_size = 100
zoo_num_points = flags.FLAGS.ntrain
zoo_mu = 0.15
tr_best = 0
for epoch in range(FLAGS.epochs):
losses = []
losses_crt = []
cnt = 0
f_ct = 0
q_totals = []
p_ratios = []
z_means = []
newtime = time.time()
for id in np.random.permutation(len(val_mat_names)):
best_IS_num = -1
mat_contents = sio.loadmat(data_path + '/' + val_mat_names[id])
adj_0 = mat_contents['adj']
nn = adj_0.shape[0]
wts = np.random.uniform(0, 1, size=(nn, 1))
start_time = time.time()
_, greedy_util = greedy_search(adj_0, wts)
# GCN
with tf.GradientTape(persistent=True) as g:
g.watch(dqn_agent.model.trainable_weights)
state = dqn_agent.makestate(adj_0, wts)
Z_mtx, fast_params = dqn_agent.act(state, train=False)
g.watch(Z_mtx)
act_vals = Z_mtx.numpy()
n_loop = zoo_num_points + 1
grad = [Z_mtx]
grad_np = [grad_ts.numpy() for grad_ts in grad]
grad_wts = [np.zeros_like(grad_wi) for grad_wi in grad_np]
for i in range(n_loop):
i_zs = deepcopy(grad_np)
if i:
mu_i = [np.random.normal(0, 1.0, act_vals.shape)]
# mu_i = [np.random.uniform(-1.0, 1.0, act_vals.shape)]
for wi in range(len(grad)):
i_zs[wi] += mu_i[wi] * zoo_mu
else:
mu_i = [np.zeros_like(wts) for wts in grad_np]
if dqn_agent.flags.predict == 'mwis':
gcn_wts = np.multiply(i_zs[0].flatten(), wts.flatten())
else:
gcn_wts = i_zs[0].flatten()
mwis, _ = local_greedy_search(adj_0, gcn_wts)
solu = list(mwis)
ss_util = np.sum(wts[solu, 0])
opt_obj = ss_util / (greedy_util + 1e-6)
if i == 0:
opt_obj_0 = opt_obj
else:
for wi in range(len(grad_np)):
grad_diff = - (opt_obj - opt_obj_0) * mu_i[wi] # maximize
grad_wts[wi] += grad_diff/zoo_mu
grad_z = [tf.convert_to_tensor(np.clip(grad_wts_j, -10.0, 10.0)) for grad_wts_j in grad_wts]
grad_gcn = g.gradient(grad, dqn_agent.model.trainable_weights, output_gradients=grad_z)
regularization_loss = tf.reduce_sum(dqn_agent.model.losses)
grad_reg = g.gradient(regularization_loss, dqn_agent.model.trainable_weights)
for ii in range(len(grad_gcn)):
if grad_reg[ii] is not None:
grad_gcn[ii] += grad_reg[ii]
dqn_agent.memorize(grad_gcn, [], [], opt_obj_0, None)
del g
p_ratio = opt_obj_0
solu = list(mwis)
q_totals.append(len(solu))
p_ratios.append(p_ratio)
z_means.append(np.mean(act_vals))
f_ct += 1
if cnt < batch_size - 1:
cnt += 1
continue
else:
cnt = 0
runtime = time.time() - newtime
newtime = time.time()
test_ratio = []
test_ratio2 = []
test_len = len(test_mat_names)
for j in range(test_len):
mat_contents = sio.loadmat(test_datapath + '/' + test_mat_names[j % test_len])
adj_0 = mat_contents['adj']
wts = mat_contents['weights'].transpose()
nn = adj_0.shape[0]
_, greedy_util = greedy_search(adj_0, wts)
bsf_q = []
q_ct = 0
res_ct = 0
out_id = -1
_, best_IS_util = dqn_agent.solve_mwis(adj_0, wts, train=False)
test_ratio.append(best_IS_util / greedy_util)
if np.mean(test_ratio) > best_ratio:
dqn_agent.save(os.path.join(model_origin, 'cp-{epoch:04d}.ckpt'.format(epoch=epoch)))
best_ratio = np.mean(test_ratio)
loss_crt = float('NaN')
loss = dqn_agent.replay(batch_size)
if loss is None:
loss = float('NaN')
losses.append(loss)
tr_factor = -np.nanmean(test_ratio)/loss
if tr_factor > tr_best:
tr_best = tr_factor
tr_dive = (tr_factor - tr_best)/tr_best
print("Epoch: {}".format(epoch),
"ID: %03d" % f_ct,
"Model: Actor",
"Train_Ratio: {:.4f}".format(np.mean(p_ratios)),
"Test_Ratio: {:.4f}".format(np.mean(test_ratio)),
"Loss: {:.4f}".format(loss),
"L_Avg: {:.4f}".format(np.mean(losses)),
"Track: {:.4f}".format(tr_factor),
"runtime: {:.2f}".format(runtime),
"z_avg: {:.3f}".format(np.nanmean(z_means)))
p_ratios = []
z_means = []
loss_vec.append(np.mean(losses))
print(loss_vec)