forked from XzrTGMu/twin-nphard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwireless_degree_centrality.py
executable file
·222 lines (194 loc) · 7.11 KB
/
wireless_degree_centrality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#!/usr/bin/ python3
# -*- coding: utf-8 -*-
# python3
# Make this standard template for testing and training
import networkx as nx
# from networkx.algorithms.approximation import independent_set
import numpy as np
import pandas as pd
import scipy.io as sio
import scipy.stats as stats
import time
from collections import deque
from copy import deepcopy
from scipy.io import savemat
from scipy.spatial import distance_matrix
import dwave_networkx as dnx
import sys
import os
from copy import copy, deepcopy
from itertools import chain, combinations
from heuristics import greedy_search, dist_greedy_search, local_greedy_search, mlp_gurobi
# visualization
import matplotlib.pyplot as plt
# This import registers the 3D projection, but is otherwise unused.
# from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
from graph_util import *
# from test_utils import *
from runtime_config import flags
flags.DEFINE_string('output', 'wireless', 'output folder')
flags.DEFINE_string('test_datapath', './data/ER_Graph_Uniform_NP20_test', 'test dataset')
flags.DEFINE_string('wt_sel', 'qr', 'qr: queue length * rate, q/r: q/r, q: queue length only, otherwise: random')
flags.DEFINE_float('load_min', 0.01, 'traffic load min')
flags.DEFINE_float('load_max', 0.15, 'traffic load max')
flags.DEFINE_float('load_step', 0.01, 'traffic load step')
flags.DEFINE_integer('instances', 10, 'number of layers.')
flags.DEFINE_integer('num_channels', 1, 'number of channels')
flags.DEFINE_integer('opt', 0, 'test algorithm')
flags.DEFINE_string('graph', 'poisson', 'type of graphs')
n_instances = flags.FLAGS.instances
gtype = flags.FLAGS.graph
train = False
n_networks = 500
# n_instances = 10
timeslots = 64
lp = 5
sim_area = 250
sim_node = 100
sim_rc = 1
sim_ri = 4
n_ch = 1
p_overlap = 0.8
# link rate high and low bound (number of packets per time slot)
sim_rate_hi = 100
sim_rate_lo = 0
# Testing load range (upper limit = 1/(average degree of conflict graphs))
# 10.78 for 10 graphs, 10.56 for 20 graphs
load_min = flags.FLAGS.load_min
load_max = flags.FLAGS.load_max
load_step = flags.FLAGS.load_step
wt_sel = flags.FLAGS.wt_sel
output_dir = flags.FLAGS.output
output_csv = os.path.join(output_dir,
'degree_centrality_{}.csv'
.format(gtype)
)
res_list = []
res_df = pd.DataFrame(columns=['graph',
'seed',
'name',
'degree_centrality',
'tmh', 'skewness', 'kurtosis', 'par'])
# if os.path.isfile(output_csv):
# res_df = pd.read_csv(output_csv, index_col=0)
if train:
datapath = flags.FLAGS.datapath
epochs = flags.FLAGS.epochs
else:
datapath = flags.FLAGS.test_datapath
epochs = 1
val_mat_names = sorted(os.listdir(datapath))
cnt = 0
np.random.seed(1)
if train:
loss = 1.0
else:
loss = np.nan
wts_sample_file = os.path.join(output_dir, 'samples.txt')
load_array = np.round(np.arange(load_min, load_max+load_step, load_step), 2)
# load = load_array[np.random.randint(0, len(load_array) - 1)]
degree_centrality = []
for i in range(500):
if gtype == 'poisson':
if i >= len(val_mat_names):
break
idx = i
mat_contents = sio.loadmat(os.path.join(datapath, val_mat_names[idx]))
gdict = mat_contents['gdict'][0, 0]
seed = mat_contents['random_seed'][0, 0]
graph_c, graph_i = poisson_graphs_from_dict(gdict)
adj_gK = nx.adjacency_matrix(graph_i)
flows = [e for e in graph_c.edges]
# flows_r = [(e[1], e[0]) for e in graph_c.edges]
# flows = flows + flows_r
nflows = len(flows)
elif gtype == 'star30':
graph_i = nx.star_graph(30)
adj_gK = nx.adjacency_matrix(graph_i)
nflows = adj_gK.shape[0]
seed = i
elif gtype == 'star20':
graph_i = nx.star_graph(20)
adj_gK = nx.adjacency_matrix(graph_i)
nflows = adj_gK.shape[0]
seed = i
elif gtype == 'star10':
graph_i = nx.star_graph(10)
adj_gK = nx.adjacency_matrix(graph_i)
nflows = adj_gK.shape[0]
seed = i
elif gtype == 'ba1':
graph_i = nx.barabasi_albert_graph(70, 1)
adj_gK = nx.adjacency_matrix(graph_i)
nflows = adj_gK.shape[0]
seed = i
elif gtype == 'ba2':
graph_i = nx.barabasi_albert_graph(70, 2)
adj_gK = nx.adjacency_matrix(graph_i)
nflows = adj_gK.shape[0]
seed = i
elif gtype == 'er':
graph_i = nx.erdos_renyi_graph(50, 0.1)
adj_gK = nx.adjacency_matrix(graph_i)
nflows = adj_gK.shape[0]
seed = i
elif gtype == 'tree':
try:
graph_i = nx.random_powerlaw_tree(50, gamma=3.0, seed=i, tries=2000)
except:
graph_i = nx.random_powerlaw_tree(50, gamma=3.0, tries=1000)
adj_gK = nx.adjacency_matrix(graph_i)
nflows = adj_gK.shape[0]
seed = i
else:
if i >= len(val_mat_names):
break
idx = i
mat_contents = sio.loadmat(os.path.join(datapath, val_mat_names[idx]))
adj_gK = mat_contents['adj']
wts = mat_contents['weights'].transpose()
nflows = adj_gK.shape[0]
seed = i
graph_i = nx.from_scipy_sparse_matrix(adj_gK)
netcfg = "Config: s {}, n {}, f {}, t {}".format(seed, sim_node, nflows, timeslots)
# degree_cent = nx.degree_centrality(graph_i)
degree_cent, degs = degree_centralization(graph_i)
tmh = np.sum(np.power(degs,2))/np.sum(degs)
kurtosis = stats.kurtosis(degs)
skewness = stats.skew(degs)
par = np.amax(degs)/np.mean(degs)
degree_centrality.append(degree_cent)
res_df = res_df.append({'graph': i,
'seed': seed,
'name': gtype,
'degree_centrality': degree_cent,
'tmh': tmh,
'skewness': skewness,
'kurtosis': kurtosis,
'par': par
}, ignore_index=True)
lg = nx.line_graph(graph_i)
degree_cent, degs = degree_centralization(lg)
tmh = np.sum(np.power(degs,2))/np.sum(degs)
kurtosis = stats.kurtosis(degs)
skewness = stats.skew(degs)
par = np.amax(degs)/np.mean(degs)
degree_centrality.append(degree_cent)
res_df = res_df.append({'graph': i,
'seed': seed,
'name': gtype+'-line',
'degree_centrality': degree_cent,
'tmh': tmh,
'skewness': skewness,
'kurtosis': kurtosis,
'par': par
}, ignore_index=True)
print("{}: {}, ".format(500, gtype),
"deg cent avg: {:.3f}, ".format(np.nanmean(degree_centrality)),
"TMH: {:.3f}".format(np.nanmean(res_df['tmh'])),
"Skewness: {:.3f}".format(np.nanmean(res_df['skewness'])),
"Kurtosis: {:.3f}".format(np.nanmean(res_df['kurtosis'])),
"Par: {:.3f}".format(np.nanmean(res_df['par']))
)
res_df.to_csv(output_csv, index=False)
print("Done!")