You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I have some clarifications below, Can you please help me with answers?
I tried with 5 classes (shoplifting,normal, stealing, robbery, burglary ), For training I have used 30 videos for shopping, 30 videos for shoplifting, 15 videos for stealing, 15 videos for robbery, 10 videos for burglary.
So for my process is
I'm using Google colab for training with 12.72 GB RAM
I created csv for training,test,validation,labels, My csv files looks like this:
storing name: TRN_something_RGB_BNInception_TRNmultiscale_segment8
Initializing TSN with base model: BNInception.
TSN Configurations:
input_modality: RGB
num_segments: 8
new_length: 1
consensus_module: TRNmultiscale
dropout_ratio: 0.8
img_feature_dim: 256
/content/drive/My Drive/TRN-pytorch/models.py:87: UserWarning: nn.init.normal is now deprecated in favor of nn.init.normal_.
normal(self.new_fc.weight, 0, std)
/content/drive/My Drive/TRN-pytorch/models.py:88: UserWarning: nn.init.constant is now deprecated in favor of nn.init.constant_.
constant(self.new_fc.bias, 0)
Multi-Scale Temporal Relation Network Module in use ['8-frame relation', '7-frame relation', '6-frame relation', '5-frame relation', '4-frame relation', '3-frame relation', '2-frame relation']
video number:59
/usr/local/lib/python3.6/dist-packages/torchvision/transforms/transforms.py:208: UserWarning: The use of the transforms.Scale transform is deprecated, please use transforms.Resize instead.
"please use transforms.Resize instead.")
video number:16
group: first_conv_weight has 1 params, lr_mult: 1, decay_mult: 1
group: first_conv_bias has 1 params, lr_mult: 2, decay_mult: 0
group: normal_weight has 83 params, lr_mult: 1, decay_mult: 1
group: normal_bias has 83 params, lr_mult: 2, decay_mult: 0
group: BN scale/shift has 2 params, lr_mult: 1, decay_mult: 0
Freezing BatchNorm2D except the first one.
main.py:175: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number
losses.update(loss.data[0], input.size(0))
main.py:176: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number
top1.update(prec1[0], input.size(0))
main.py:177: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number
top5.update(prec5[0], input.size(0))
main.py:186: UserWarning: torch.nn.utils.clip_grad_norm is now deprecated in favor of torch.nn.utils.clip_grad_norm_.
total_norm = clip_grad_norm(model.parameters(), args.clip_gradient)
Epoch: [0][0/4], lr: 0.00100 Time 16.655 (16.655) Data 4.173 (4.173) Loss 1.6147 (1.6147) Prec@1 50.000 (50.000) Prec@5 100.000 (100.000)
Freezing BatchNorm2D except the first one.
Epoch: [1][0/4], lr: 0.00100 Time 5.917 (5.917) Data 4.407 (4.407) Loss 1.6116 (1.6116) Prec@1 18.750 (18.750) Prec@5 100.000 (100.000)
Freezing BatchNorm2D except the first one.
Epoch: [2][0/4], lr: 0.00100 Time 5.543 (5.543) Data 4.102 (4.102) Loss 1.4904 (1.4904) Prec@1 25.000 (25.000) Prec@5 100.000 (100.000)
Freezing BatchNorm2D except the first one.
Epoch: [3][0/4], lr: 0.00100 Time 6.334 (6.334) Data 4.920 (4.920) Loss 1.4325 (1.4325) Prec@1 25.000 (25.000) Prec@5 100.000 (100.000)
Freezing BatchNorm2D except the first one.
Epoch: [4][0/4], lr: 0.00100 Time 7.225 (7.225) Data 5.824 (5.824) Loss 1.4092 (1.4092) Prec@1 31.250 (31.250) Prec@5 100.000 (100.000)
Freezing BatchNorm2D except the first one.
main.py:223: UserWarning: volatile was removed and now has no effect. Use `with torch.no_grad():` instead.
input_var = torch.autograd.Variable(input, volatile=True)
main.py:224: UserWarning: volatile was removed and now has no effect. Use `with torch.no_grad():` instead.
target_var = torch.autograd.Variable(target, volatile=True)
main.py:233: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number
losses.update(loss.data[0], input.size(0))
main.py:234: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number
top1.update(prec1[0], input.size(0))
main.py:235: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number
top5.update(prec5[0], input.size(0))
Test: [0/1] Time 1.686 (1.686) Loss 1.5454 (1.5454) Prec@1 31.250 (31.250) Prec@5 100.000 (100.000)
Testing Results: Prec@1 31.250 Prec@5 100.000 Loss 1.54541
Best Prec@1: 0.000
Freezing BatchNorm2D except the first one.
Epoch: [5][0/4], lr: 0.00100 Time 5.674 (5.674) Data 4.189 (4.189) Loss 1.4755 (1.4755) Prec@1 25.000 (25.000) Prec@5 100.000 (100.000)
Freezing BatchNorm2D except the first one.
Epoch: [6][0/4], lr: 0.00100 Time 4.719 (4.719) Data 3.302 (3.302) Loss 1.5275 (1.5275) Prec@1 31.250 (31.250) Prec@5 100.000 (100.000)
Freezing BatchNorm2D except the first one.
Epoch: [7][0/4], lr: 0.00100 Time 4.682 (4.682) Data 3.281 (3.281) Loss 1.3586 (1.3586) Prec@1 31.250 (31.250) Prec@5 100.000 (100.000)
Freezing BatchNorm2D except the first one.
Epoch: [8][0/4], lr: 0.00100 Time 6.715 (6.715) Data 5.315 (5.315) Loss 1.2957 (1.2957) Prec@1 43.750 (43.750) Prec@5 100.000 (100.000)
Freezing BatchNorm2D except the first one.
Epoch: [9][0/4], lr: 0.00100 Time 3.891 (3.891) Data 2.501 (2.501) Loss 1.2222 (1.2222) Prec@1 43.750 (43.750) Prec@5 100.000 (100.000)
Freezing BatchNorm2D except the first one.
Test: [0/1] Time 1.638 (1.638) Loss 1.5057 (1.5057) Prec@1 31.250 (31.250) Prec@5 100.000 (100.000)
Testing Results: Prec@1 31.250 Prec@5 100.000 Loss 1.50569
Best Prec@1: 31.250
Freezing BatchNorm2D except the first one.
After completing my training, I'm getting same result for every input video (accuracy, labels are always same).
This is the result I got for each and every input video
In training epoch what is the meaning of Epoch: [5][0/4] also In my training [0/4] not increasing till the end. But in your training, I see the following
Epoch: [993][0/64], lr: 0.00100 Time 3.399 (3.399) Data 3.113 (3.113) Loss 1.8708 (1.8708) Prec@1 25.000 (25.000) Prec@5 100.000 (100.000)
Epoch: [993][20/64], lr: 0.00100 Time 0.179 (0.336) Data 0.000 (0.148) Loss 2.1559 (1.9719) Prec@1 12.500 (12.500) Prec@5 37.500 (72.619)
Epoch: [993][40/64], lr: 0.00100 Time 0.179 (0.260) Data 0.000 (0.076) Loss 2.0889 (1.9944) Prec@1 0.000 (13.110) Prec@5 50.000 (68.902)
Also my Prec@5 is always Prec@5 100.000 (100.000)
Is this because of I'm using colab? for training ??, the reason to ask is, the colab training stops in 119 steps(close to an hour training only), I suspect this is the issue, since I couldn't continue the training for more than hour, Do I have any place in the code to configure the training time?
Do I need to use 1080 TI or AWS for continuous training of atleast 12 hours?
Hi @highway007,
I have some clarifications below, Can you please help me with answers?
I tried with 5 classes (shoplifting,normal, stealing, robbery, burglary ), For training I have used 30 videos for shopping, 30 videos for shoplifting, 15 videos for stealing, 15 videos for robbery, 10 videos for burglary.
So for my process is
I'm using Google colab for training with 12.72 GB RAM
I created
csv
for training,test,validation,labels, My csv files looks like this:This is my label.csv
This is my train.csv
This is my test.csv
This is my validation.csv
My train_videofolder.txt file looks like this
val_videofolder.txt
category.txt
This is my training code
My training looks like this
After completing my training, I'm getting same result for every input video (accuracy, labels are always same).
This is the result I got for each and every input video
I have some clarifications
Epoch: [5][0/4]
also In my training[0/4]
not increasing till the end. But in your training, I see the followingAlso my
Prec@5
is alwaysPrec@5 100.000 (100.000)
Is this because of I'm using colab? for training ??, the reason to ask is, the colab training stops in 119 steps(close to an hour training only), I suspect this is the issue, since I couldn't continue the training for more than hour, Do I have any place in the code to configure the training time?
Do I need to use 1080 TI or AWS for continuous training of atleast 12 hours?
Originally posted by @Malathi15 in #46 (comment)
The text was updated successfully, but these errors were encountered: