Skip to content

Latest commit

 

History

History
2582 lines (2026 loc) · 41.6 KB

task02.md

File metadata and controls

2582 lines (2026 loc) · 41.6 KB

一、文件的读取和写入

1. 文件读取

import numpy as np
import pandas as pd
df_csv = pd.read_csv(r"C:\Users\zhoukaiwei\Desktop\CSV.csv")
df_csv
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Unnamed: 0 clum1 clum2 clum3 time
0 0 a A 1 2020.1.1
1 1 b B 2 2020.1.1
2 2 c C 3 2020.1.1
3 3 d D 4 2020.1.1
4 4 e E 5 2020.1.1
5 5 f F 6 2020.1.1
df_excel = pd.read_excel(r"C:\Users\zhoukaiwei\Desktop\my_excel.xlsx")
df_excel
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Unnamed: 0 clum1 clum2 clum3 time
0 0 a A 1 2020.1.1
1 1 b B 2 2020.1.1
2 2 c C 3 2020.1.1
3 3 d D 4 2020.1.1
4 4 e E 5 2020.1.1
5 5 f F 6 2020.1.1

这里有一些常用的公共参数, header=None 表示第一行不作为列名, index_col 表示把某一列或 几列作为索引,索引的内容将会在第三章进行详述, usecols 表示读取列的集合,默认读取所有的 列, parse_dates 表示需要转化为时间的列,关于时间序列的有关内容将在第十章讲解, nrows 表示读取的数据行数。上面这些参数在上述的三个函数里都可以使用。

df_excel = pd.read_excel(r"C:\Users\zhoukaiwei\Desktop\my_excel.xlsx",header = None)
df_excel
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
0 1 2 3 4
0 NaN clum1 clum2 clum3 time
1 0.0 a A 1 2020.1.1
2 1.0 b B 2 2020.1.1
3 2.0 c C 3 2020.1.1
4 3.0 d D 4 2020.1.1
5 4.0 e E 5 2020.1.1
6 5.0 f F 6 2020.1.1
df_excel = pd.read_excel(r"C:\Users\zhoukaiwei\Desktop\my_excel.xlsx",usecols=['clum3'])
df_excel
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
clum3
0 1
1 2
2 3
3 4
4 5
5 6
df_excel = pd.read_excel(r"C:\Users\zhoukaiwei\Desktop\my_excel.xlsx",parse_dates=['time'])
df_excel
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Unnamed: 0 clum1 clum2 clum3 time
0 0 a A 1 2020-01-01
1 1 b B 2 2020-01-01
2 2 c C 3 2020-01-01
3 3 d D 4 2020-01-01
4 4 e E 5 2020-01-01
5 5 f F 6 2020-01-01

二、基本数据结构

pandas 中具有两种基本的数据存储结构,存储一维 values 的 Series 和存储二维 values 的 DataFrame .

Series 一般由四个部分组成,分别是序列的值 data 、索引 index 、存储类型 dtype 、 序列的名字 name 。其中,索引也可以指定它的名字,默认为空。

A = pd.Series(data = [100,'A',{'index':5}],
             index = pd.Index(['id1','id2','id3'],name = 'index'),
             dtype = 'object',name = 'my_name')
A
index
id1             100
id2               A
id3    {'index': 5}
Name: my_name, dtype: object

获取属性

A.values
array([100, 'A', {'index': 5}], dtype=object)
A.index
Index(['id1', 'id2', 'id3'], dtype='object', name='index')
A.dtype
dtype('O')
A.shape
(3,)
A['id2']
'A'

DataFrame 在 Series 的基础上增加了列索引,一个数据框可以由二维的 data 与行列索引来构造:

import pandas as pd
data = [[1,'a',1.2],[2,'b',2.2],[3,'c',3.2]]
df = pd.DataFrame(data = data,index = ['a_%d'%i for i in range(3)],columns = ['b_%d'%i for i in range(3)])
df
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
b_0 b_1 b_2
a_0 1 a 1.2
a_1 2 b 2.2
a_2 3 c 3.2

用从列索引名到数据的映射来构造数据框,同时再加上行索引:

data = pd.DataFrame(data = {'col_0':[1,2,3],'col_1':list('abc'),'col_2':[1.2,2.2,3.2]},
                   index = ['row_%d'%i for i in range(3)])
data
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
col_0 col_1 col_2
row_0 1 a 1.2
row_1 2 b 2.2
row_2 3 c 3.2
data['col_1']
row_0    a
row_1    b
row_2    c
Name: col_1, dtype: object
data.values
array([[1, 'a', 1.2],
       [2, 'b', 2.2],
       [3, 'c', 3.2]], dtype=object)
data.shape#大小
(3, 3)
data.T#转置
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
row_0 row_1 row_2
col_0 1 2 3
col_1 a b c
col_2 1.2 2.2 3.2

三、常用基本函数

import pandas as pd
df = pd.read_csv(r'C:\Users\zhoukaiwei\Desktop\joyful-pandas\data\learn_pandas.csv')
df.columns
Index(['School', 'Grade', 'Name', 'Gender', 'Height', 'Weight', 'Transfer',
       'Test_Number', 'Test_Date', 'Time_Record'],
      dtype='object')

head, tail 函数分别表示返回表或者序列的前 n 行和后 n 行,其中 n 默认为5:

df = df[df.columns[:7]]
df.head(3)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
School Grade Name Gender Height Weight Transfer
0 Shanghai Jiao Tong University Freshman Gaopeng Yang Female 158.9 46.0 N
1 Peking University Freshman Changqiang You Male 166.5 70.0 N
2 Shanghai Jiao Tong University Senior Mei Sun Male 188.9 89.0 N
df.tail(5)
df
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
School Grade Name Gender Height Weight Transfer
0 Shanghai Jiao Tong University Freshman Gaopeng Yang Female 158.9 46.0 N
1 Peking University Freshman Changqiang You Male 166.5 70.0 N
2 Shanghai Jiao Tong University Senior Mei Sun Male 188.9 89.0 N
3 Fudan University Sophomore Xiaojuan Sun Female NaN 41.0 N
4 Fudan University Sophomore Gaojuan You Male 174.0 74.0 N
... ... ... ... ... ... ... ...
195 Fudan University Junior Xiaojuan Sun Female 153.9 46.0 N
196 Tsinghua University Senior Li Zhao Female 160.9 50.0 N
197 Shanghai Jiao Tong University Senior Chengqiang Chu Female 153.9 45.0 N
198 Shanghai Jiao Tong University Senior Chengmei Shen Male 175.3 71.0 N
199 Tsinghua University Sophomore Chunpeng Lv Male 155.7 51.0 N

200 rows × 7 columns

df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 7 columns):
 #   Column    Non-Null Count  Dtype  
---  ------    --------------  -----  
 0   School    200 non-null    object 
 1   Grade     200 non-null    object 
 2   Name      200 non-null    object 
 3   Gender    200 non-null    object 
 4   Height    183 non-null    float64
 5   Weight    189 non-null    float64
 6   Transfer  188 non-null    object 
dtypes: float64(2), object(5)
memory usage: 11.1+ KB
df.describe()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Height Weight
count 183.000000 189.000000
mean 163.218033 55.015873
std 8.608879 12.824294
min 145.400000 34.000000
25% 157.150000 46.000000
50% 161.900000 51.000000
75% 167.500000 65.000000
max 193.900000 89.000000
df['School'].unique()#得到唯一值组成的列表
array(['Shanghai Jiao Tong University', 'Peking University',
       'Fudan University', 'Tsinghua University'], dtype=object)
df['School'].nunique()#得到唯一值的个数
4
df['School'].value_counts()#value_counts 可以得到唯一值和其对应出现的频数:
Tsinghua University              69
Shanghai Jiao Tong University    57
Fudan University                 40
Peking University                34
Name: School, dtype: int64

使用 drop_duplicates得到多个列组合的唯一值,其中的关键参数是 keep ,默认值 first 表示每 个组合保留第一次出现的所在行, last 表示保留最后一次出现的所在行, False 表示把所有重 复组合所在的行剔除。

df_A = df[['School','Transfer','Name']]
df_A
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
School Transfer Name
0 Shanghai Jiao Tong University N Gaopeng Yang
1 Peking University N Changqiang You
2 Shanghai Jiao Tong University N Mei Sun
3 Fudan University N Xiaojuan Sun
4 Fudan University N Gaojuan You
... ... ... ...
195 Fudan University N Xiaojuan Sun
196 Tsinghua University N Li Zhao
197 Shanghai Jiao Tong University N Chengqiang Chu
198 Shanghai Jiao Tong University N Chengmei Shen
199 Tsinghua University N Chunpeng Lv

200 rows × 3 columns

df_A.drop_duplicates(['School','Transfer'])
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
School Transfer Name
0 Shanghai Jiao Tong University N Gaopeng Yang
1 Peking University N Changqiang You
3 Fudan University N Xiaojuan Sun
5 Tsinghua University N Xiaoli Qian
12 Shanghai Jiao Tong University NaN Peng You
36 Peking University Y Xiaojuan Qin
43 Tsinghua University Y Gaoli Feng
69 Tsinghua University NaN Chunquan Xu
84 Fudan University NaN Yanjuan Lv
102 Peking University NaN Chengli Zhao
131 Fudan University Y Chengpeng Qian

4. 替换函数

一般而言,替换操作是针对某一个列进行的,因此下面的例子都以 Series 举例。 pandas 中的 替换函数可以归纳为三类:映射替换、逻辑替换、数值替换。其中映射替换包含 replace 方法、 str.replace 方法以及cat.codes 方法,此处介绍 replace 的用法。 在 replace 中,可以通过字典构造,或者传入两个列表来进行替换:

#df = pd.read_csv(r'C:\Users\zhoukaiwei\Desktop\joyful-pandas\data\learn_pandas.csv')
#df = df[df.columns[:7]]
df['Gender'].replace({'Female':0, 'Male':1}).head()
0    0
1    1
2    1
3    0
4    1
Name: Gender, dtype: int64

5. 排序函数

排序共有两种方式,其一为值排序,其二为索引排序,对应的函数是 sort_values 和 sort_index 。 参数 ascending=True 为升序:

df_A = df[['Grade', 'Name', 'Height',
   ....:               'Weight']].set_index(['Grade','Name'])
df_A.sort_values('Height').head()#升序排列
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Height Weight
Grade Name
Junior Xiaoli Chu 145.4 34.0
Senior Gaomei Lv 147.3 34.0
Sophomore Peng Han 147.8 34.0
Senior Changli Lv 148.7 41.0
Sophomore Changjuan You 150.5 40.0
df_A.sort_values('Height', ascending=False).head()#降序排列
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Height Weight
Grade Name
Senior Xiaoqiang Qin 193.9 79.0
Mei Sun 188.9 89.0
Gaoli Zhao 186.5 83.0
Freshman Qiang Han 185.3 87.0
Senior Qiang Zheng 183.9 87.0
df_A.sort_values(['Weight','Height'],ascending=[True,False]).head(10)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Height Weight
Grade Name
Sophomore Peng Han 147.8 34.0
Senior Gaomei Lv 147.3 34.0
Junior Xiaoli Chu 145.4 34.0
Sophomore Qiang Zhou 150.5 36.0
Freshman Yanqiang Xu 152.4 38.0
Qiang Han 151.8 38.0
Senior Chengpeng Zheng 151.7 38.0
Sophomore Mei Xu 154.2 39.0
Freshman Xiaoquan Sun 154.6 40.0
Sophomore Qiang Sun 154.3 40.0
df_A.sort_index(level = ['Grade','Name'],ascending=[True,False]).head(10)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Height Weight
Grade Name
Freshman Yanquan Wang 163.5 55.0
Yanqiang Xu 152.4 38.0
Yanqiang Feng 162.3 51.0
Yanpeng Lv NaN 65.0
Yanli Zhang 165.1 52.0
Yanjuan Zhao NaN 53.0
Yanjuan Han 163.7 49.0
Xiaoquan Sun 154.6 40.0
Xiaopeng Zhou 174.1 74.0
Xiaopeng Zhao 161.0 53.0

6. apply方法

apply 方法常用于 DataFrame 的行迭代或者列迭代,它的 axis 含义与第2小节中的统计聚合函 数一致, apply 的参数往往是一个以序列为输入的函数。例如对于 .mean() ,使用 apply 可 以如下地写出:

#df = pd.read_csv(r'C:\Users\zhoukaiwei\Desktop\joyful-pandas\data\learn_pandas.csv')
df_A = df[['Height','Weight']]
df_A
def A_mean(x):
    res = x.mean()
    return res
df_A.apply(A_mean)
Height    163.218033
Weight     55.015873
dtype: float64
df_A.apply(lambda x: x.mean())#使用lambda表达式
Height    163.218033
Weight     55.015873
dtype: float64

四、窗口对象

pandas 中有3类窗口分别是滑动窗口 rolling扩张窗口 expanding 以及指数加权窗口 ewm

1. 滑窗对象

要使用滑窗函数就必须先要对一个序列使用 .rolling 得到滑窗对象其最重要的参数为窗口大小 window例如
s = pd.Series([1,2,3,4,5])
A = s.rolling(window = 3)
A
Rolling [window=3,center=False,axis=0]
在得到了滑窗对象后能够使用相应的聚合函数进行计算需要注意的是窗口包含当前行所在的元素例如在第四个位置进行均值运算时应当计算(2+3+4)/3而不是(1+2+3)/3
A.mean()
0    NaN
1    NaN
2    2.0
3    3.0
4    4.0
dtype: float64
A.sum()
0     NaN
1     NaN
2     6.0
3     9.0
4    12.0
dtype: float64
#计算滑动窗口的相关系数和协方差
s = pd.Series([1,2,6,16,30])
A.cov(s)
0     NaN
1     NaN
2     2.5
3     7.0
4    12.0
dtype: float64
A.corr(s)
0         NaN
1         NaN
2    0.944911
3    0.970725
4    0.995402
dtype: float64

shift, diff, pct_change 是一组类滑窗函数,它们的公共参数为 periods=n ,默认为1 ,分别表示取向前第 n 个元素的值、与向前第 n 个元素做差(与 Numpy 中不同, 后者表示 n 阶差分)、与向前第 n 个元素相比计算增长率。这里的 n 可以为负,表示反方 向的类似操作。

s = pd.Series([1,3,6,10,15])
s.shift(1)
0     NaN
1     1.0
2     3.0
3     6.0
4    10.0
dtype: float64
s.diff(2)
0    NaN
1    NaN
2    5.0
3    7.0
4    9.0
dtype: float64
s.pct_change()
0         NaN
1    2.000000
2    1.000000
3    0.666667
4    0.500000
dtype: float64
s.shift(-1)
0     3.0
1     6.0
2    10.0
3    15.0
4     NaN
dtype: float64

2. 扩张窗口

s = pd.Series([1, 3, 6, 10])
s.expanding().mean()
0    1.000000
1    2.000000
2    3.333333
3    5.000000
dtype: float64

五、练习

Ex1:口袋妖怪数据集

现有一份口袋妖怪的数据集,下面进行一些背景说明: #代表全国图鉴编号,不同行存在相同数字则表示为该妖怪的不同状态 妖怪具有单属性和双属性两种,对于单属性的妖怪, Type 2 为缺失值 Total, HP, Attack, Defense, Sp. Atk, Sp. Def, Speed 分别代表种族值、体力、物攻、防御、 特攻、特防、速度,其中种族值为后6项之和

df = pd.read_csv(r'C:\Users\zhoukaiwei\Desktop\joyful-pandas\data\pokemon.csv')
df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
# Name Type 1 Type 2 Total HP Attack Defense Sp. Atk Sp. Def Speed
0 1 Bulbasaur Grass Poison 318 45 49 49 65 65 45
1 2 Ivysaur Grass Poison 405 60 62 63 80 80 60
2 3 Venusaur Grass Poison 525 80 82 83 100 100 80
3 3 VenusaurMega Venusaur Grass Poison 625 80 100 123 122 120 80
4 4 Charmander Fire NaN 309 39 52 43 60 50 65

1.对 HP, Attack, Defense, Sp. Atk, Sp. Def, Speed 进行加总,验证是否为 Total 值。

A = (df[['HP','Attack','Defense','Sp. Atk','Sp. Def','Speed']]).sum(1)
A
0      318
1      405
2      525
3      625
4      309
      ... 
795    600
796    700
797    600
798    680
799    600
Length: 800, dtype: int64
x= (A != df['Total']).mean()
x
0.0

对于 # 重复的妖怪只保留第一条记录,解决以下问题:

求第一属性的种类数量和前三多数量对应的种类

df_A = df.drop_duplicates('#',keep='first')
df_A.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
# Name Type 1 Type 2 Total HP Attack Defense Sp. Atk Sp. Def Speed
0 1 Bulbasaur Grass Poison 318 45 49 49 65 65 45
1 2 Ivysaur Grass Poison 405 60 62 63 80 80 60
2 3 Venusaur Grass Poison 525 80 82 83 100 100 80
4 4 Charmander Fire NaN 309 39 52 43 60 50 65
5 5 Charmeleon Fire NaN 405 58 64 58 80 65 80
df_A['Type 1'].nunique()
18
df_A['Type 1'].value_counts().head(3)
Water     105
Normal     93
Grass      66
Name: Type 1, dtype: int64

求第一属性和第二属性的组合种类

df_B = df_A.drop_duplicates(['Type 1','Type 2'])
df_B.shape[0]
143

求尚未出现过的属性组合

import numpy as np
L_full = [i+' '+j for i in df['Type 1'].unique() for j in (
           df['Type 1'].unique().tolist() + [''])]
L_part = [i+' '+j for i, j in zip(df['Type 1'], df['Type 2'
          ].replace(np.nan, ''))]
res = set(L_full).difference(set(L_part))
len(res)
188

按照下述要求,构造 Series :

取出物攻,超过120的替换为 high ,不足50的替换为 low ,否则设为 mid111

res = df['Attack'].mask(df['Attack'] > 120, 'high').mask(df['Attack']<50, 'low'
                                                        ).mask((50<=df['Attack'])&(df['Attack']<=120), 'mid')
res
0       low
1       mid
2       mid
3       mid
4       mid
       ... 
795     mid
796    high
797     mid
798    high
799     mid
Name: Attack, Length: 800, dtype: object

取出第一属性,分别用 replace 和 apply 替换所有字母为大写

df['Type 1'].replace({i:str.upper(i) for i in df['Type 1']})
0        GRASS
1        GRASS
2        GRASS
3        GRASS
4         FIRE
        ...   
795       ROCK
796       ROCK
797    PSYCHIC
798    PSYCHIC
799       FIRE
Name: Type 1, Length: 800, dtype: object
df['Type 1'].apply(lambda x:str.upper(x))
0        GRASS
1        GRASS
2        GRASS
3        GRASS
4         FIRE
        ...   
795       ROCK
796       ROCK
797    PSYCHIC
798    PSYCHIC
799       FIRE
Name: Type 1, Length: 800, dtype: object

求每个妖怪六项能力的离差,即所有能力中偏离中位数最大的值,添加到 df 并从大到小排序

df['Deviation'] = df[['HP', 'Attack', 'Defense', 'Sp. Atk',
                     'Sp. Def', 'Speed']].apply(lambda x:np.max(
                       (x-x.median()).abs()), 1)
    
df.sort_values('Deviation', ascending=False).head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
# Name Type 1 Type 2 Total HP Attack Defense Sp. Atk Sp. Def Speed Deviation
230 213 Shuckle Bug Rock 505 20 10 230 10 230 5 215.0
121 113 Chansey Normal NaN 450 250 5 5 35 105 50 207.5
261 242 Blissey Normal NaN 540 255 10 10 75 135 55 190.0
333 306 AggronMega Aggron Steel NaN 630 70 140 230 60 80 50 155.0
224 208 SteelixMega Steelix Steel Ground 610 75 125 230 55 95 30 145.0

Ex2:指数加权窗口

作为扩张窗口的 ewm 窗口

在扩张窗口中,用户可以使用各类函数进行历史的累计指标统计,但这些内置的统计函数往往把 窗口中的所有元素赋予了同样的权重。事实上,可以给出不同的权重来赋给窗口中的元素, 指数加权窗口就是这样一种特殊的扩张窗口。 其中,最重要的参数是 alpha ,它决定了默认情况下的窗口权重为 wi=(1−α)i,i∈{0,1,...,t} , 其中 i=t 表示当前元素, i=0 表示序列的第一个元素。 从权重公式可以看出,离开当前值越远则权重越小,若记原序列为 x ,更新后的当前元素为 yt ,此时通过加权公式归一化后可知:

\begin{split}y_t &=\frac{\sum_{i=0}^{t} w_i x_{t-i}}{\sum_{i=0}^{t} w_i} \ &=\frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ...

  • (1 - \alpha)^{t} x_{0}}{1 + (1 - \alpha) + (1 - \alpha)^2 + ...
  • (1 - \alpha)^{t}}\\end{split}
np.random.seed(0)
s = pd.Series(np.random.randint(-1,2,30).cumsum())
s.head()
0   -1
1   -1
2   -2
3   -2
4   -2
dtype: int32
s.ewm(alpha=0.2).mean().head()
0   -1.000000
1   -1.000000
2   -1.409836
3   -1.609756
4   -1.725845
dtype: float64

请用 expanding 窗口实现。

作为滑动窗口的 ewm 窗口

从第1问中可以看到, ewm 作为一种扩张窗口的特例,只能从序列的第一个元素开始加权。 现在希望给定一个限制窗口 n ,只对包含自身的最近的 n 个元素作为窗口进行滑动加权平滑。 请根据滑窗函数,给出新的 wi 与 yt 的更新公式,并通过 rolling窗口实现这一功能。