-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFDM03.cpp
571 lines (498 loc) · 17.4 KB
/
FDM03.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
/* Method 3 for 2D LR91 */
/* Operator splitting +ADI for PDE
adaptive time step for ODE */
/* ref: An Advanced Algorithm for Solving Partial Differential Equation in Cardiac Conduction. 1999. */
/* some parameters of the Phase I Luo–Rudy action potential model to achieve a stable period-1 spiral wave.
The rate constants of gate d, f and X are increased by 50 times, to reduce the APD from 360ms to 45.7ms, since the
wavelength of LR91 is too long for the small tissue size 200*200.*/
/* Xiang Zhou, 2017/10/12 */
//#include "stdafx.h"
#include <iostream>
#include <iomanip>
#include <math.h>
#include <fstream>
#include <stdlib.h>
#include <stdio.h>
//*******FDM parameters for LR91 *******
int const nx = 200, ny = 200;//grid numbers
double dx = 0.015, dy = 0.015;//space step, 3cm*3cm
double D = 0.001;//D: diffusion coefficient cm^2/ms
/* Time Step */
double dt_max = 0.02; // Time step (ms)
double dt_min = 0.001;
double dt;
double t; // Time (ms)
int steps; // Number of Steps
int increment; // Loop Control Variable
int cutcount = 40 / dt_max;
/* Voltage */
double V[nx + 2][nx + 2]; // Initial Voltage (mv)
double dV2[nx + 2][nx + 2]; // second order derivatives of Voltage (mv)
double dVdt[nx + 2][nx + 2]; // first order derivatives of Voltage (mv)
double Vnew[nx + 2][nx + 2];// New Voltage (mV)
double dvdt; // Change in Voltage / Change in Time (mV/ms)
double dvdtnew; // New dv/dt (mV/ms)
/* Total Current and Stimulus */
double st; // Constant Stimulus (uA/cm^2)
double tstim; //Time Stimulus is Applied (ms)//Time to begin stimulus
int stimtime = (int)(0.6/dt_max+0.6); //Time period during which stimulus is applied
double it[nx + 1][nx + 1]; // Total current (uA/cm^2)
/* Terms for Solution of Conductance and Reversal Potential */
const double R = 8314; // Universal Gas Constant (J/kmol*K)
const double frdy = 96485; // Faraday's Constant (C/mol)
double temp = 310; // Temperature (K)
/* Ion Concentrations */
double nai; // Intracellular Na Concentration (mM)
double nao; // Extracellular Na Concentration (mM)
double cai[nx + 1][nx + 1]; // Intracellular Ca Concentration (mM)
double cao; // Extracellular Ca Concentration (mM)
double ki; // Intracellular K Concentration (mM)
double ko; // Extracellular K Concentration (mM)
/* Fast Sodium Current (time dependant) */
double ina[nx + 1][nx + 1]; // Fast Na Current (uA/uF)
double gna; // Max. Conductance of the Na Channel (mS/uF)
double ena; // Reversal Potential of Na (mV)
double am; // Na alpha-m rate constant (ms^-1)
double bm; // Na beta-m rate constant (ms^-1)
double ah; // Na alpha-h rate constant (ms^-1)
double bh; // Na beta-h rate constant (ms^-1)
double aj; // Na alpha-j rate constant (ms^-1)
double bj; // Na beta-j rate constant (ms^-1)
double mtau; // Na activation
double htau; // Na inactivation
double jtau; // Na inactivation
double mss; // Na activation
double hss; // Na inactivation
double jss; // Na slow inactivation
double m[nx + 1][nx + 1]; // Na activation
double h[nx + 1][nx + 1]; // Na inactivation
double jj[nx + 1][nx + 1]; // Na slow inactivation
/* Current through L-type Ca Channel */
double dcai; // Change in myoplasmic Ca concentration (mM)
double isi[nx + 1][nx + 1]; // Slow inward current (uA/uF)
double esi[nx + 1][nx + 1]; // Reversal Potential of si (mV)
double ad; // Ca alpha-d rate constant (ms^-1)
double bd; // Ca beta-d rate constant (ms^-1)
double af; // Ca alpha-f rate constant (ms^-1)
double bf; // Ca beta-f rate constant (ms^-1)
double d[nx + 1][nx + 1]; // Voltage dependant activation gate
double dss; // Steady-state value of activation gate d
double taud; // Time constant of gate d (ms^-1)----mistake ????ms?
double f[nx + 1][nx + 1]; // Voltage dependant inactivation gate
double fss; // Steady-state value of inactivation gate f
double tauf; // Time constant of gate f (ms^-1)
double fca[nx + 1][nx + 1]; // Ca dependant inactivation gate -from LR94
/* Time-dependent potassium current*/
double ik[nx + 1][nx + 1]; // Rapidly Activating K Current (uA/uF)
double gk; // Channel Conductance of Rapidly Activating K Current (mS/uF)
double ek; // Reversal Potential of Rapidly Activating K Current (mV)
double ax; // K alpha-x rate constant (ms^-1)
double bx; // K beta-x rate constant (ms^-1)
double X[nx + 1][nx + 1]; // Rapidly Activating K time-dependant activation --gate X in LR91
double xss; // Steady-state value of inactivation gate xr --gate X in LR91
double taux; // Time constant of gate xr (ms^-1) --gate X in LR91
double Xi; // K time-independent inactivation --gate Xi in LR91
/* Potassium Current (time-independent) */
double ik1[nx + 1][nx + 1]; // Time-independent K current (uA/uF)
double gk1; // Channel Conductance of Time Independant K Current (mS/uF)
double ek1; // Reversal Potential of Time Independant K Current (mV)
double ak1; // K alpha-ki rate constant (ms^-1)
double bk1; // K beta-ki rate constant (ms^-1)
double K1ss; // Steady-state value of K inactivation gate K1
/* Plateau Potassium Current */
double ikp[nx + 1][nx + 1]; // Plateau K current (uA/uF)
double gkp; // Channel Conductance of Plateau K Current (mS/uF)
double ekp; // Reversal Potential of Plateau K Current (mV)
double kp; // K plateau factor
/* Background Current */
double ib[nx + 1][nx + 1]; // Background current (uA/uF)
//temporary gate value
double m0[nx + 1][nx + 1], h0[nx + 1][nx + 1], jj0[nx + 1][nx + 1];
double d0[nx + 1][nx + 1], f0[nx + 1][nx + 1];
double X0[nx + 1][nx + 1];
//performance compared
double Vmax, V_left = 0, V_right = 0, left_peak, right_peak, conduction_t = 0;
double APD90; // Time of 90% Repolarization
double Vold, v_onset;
/* Ion Current Functions */
void comp_ina(int i, int j); // Calculates Fast Na Current
void comp_ical(int i, int j); // Calculates Currents through L-Type Ca Channel
void comp_ik(int i, int j); // Calculates Time-dependent K Current
void comp_ik1(int i, int j); // Calculates Time-Independent K Current
void comp_ikp(int i, int j); // Calculates Plateau K Current
void comp_ib(int i, int j); // Calculates Background Current
void comp_it(int i, int j); // Calculates Total Current
double get_it(int i, int j);
void new_gate(int i, int j);// renew gate value when t+dt
FILE *single_ap;
void performance();
int main(int argc, char* argv[])
{
/* Data File */
FILE *ap;
FILE *fevaluation;
fevaluation = fopen("fevaluation", "w");
single_ap = fopen("single_ap", "w");
/* Time Loop Conditions */
t = 0.0; // Time (ms)
// steps = (bcl*beats)/udt; // Number of ms
st = -80.0; // Stimulus (mA)
/* Beginning Ion Concentrations */
nai = 18; // Initial Intracellular Na (mM)
nao = 140; // Initial Extracellular Na (mM)
ki = 145; // Initial Intracellular K (mM)
ko = 5.4; // Initial Extracellular K (mM)
//cai = 0.0002; // Initial Intracellular Ca (mM)
cao = 1.8; // Initial Extracellular Ca (mM)
int ncount, i, j;
for (i = 1; i < nx + 1; i++){
for (j = 1; j < ny + 1; j++){
V[i][j] = -88.654973; // Initial Voltage (mv)
m[i][j] = 0.000838;
h[i][j] = 0.993336;
jj[i][j] = 0.995484;
d[i][j] = 0.000003;
f[i][j] = 0.999745;
X[i][j] = 0.000129;
cai[i][j] = 0.0002; // Initial Intracellular Ca (mM)
}
}
int nstep = 4 / dt_max; // snapshot interval 4 ms to save data files
int index = 0;// filename index
char filename[100];
clock_t start, end;
start = clock();
// for ADI of step 1 and 3
double belta[nx + 1];
double eta = dt_max*D / (dx*dx);
double b = 1 + eta;
double b_1 = 1 + eta / 2;//take care the boundary value
double b_n = 1 + eta / 2;//take care the boundary value
double c = -eta / 2;
double a = -eta / 2;
double f[nx + 1][ny + 1];
double y_temp[nx + 1];
for (ncount = 0; ncount <= 160/dt_max; ncount++){//simulation time is 160ms
for (i = 1; i < nx + 1; i++){
//****no flux boundary conditions*****
V[i][0] = V[i][1];
V[i][ny + 1] = V[i][ny];
}
for (j = 1; j < ny + 1; j++){
V[0][j] = V[1][j];
V[nx + 1][j] = V[nx][j];
}
//**** save data in file "ap"
int fileflag = 0;
for (i = 1; i < nx + 1; i++){
for (j = 1; j < ny + 1; j++){
if (ncount%nstep == 0){//save data every 4 ms
if (fileflag == 0){
sprintf(filename, "ap%d", index);
ap = fopen(filename, "w");
fileflag = 1;
index++;
}
fprintf(ap, "%g\t", V[i][j]);
if (j == ny){
fprintf(ap, "\n");
}
}
}
}
if (fileflag == 1){
fclose(ap);
}
performance();
//**** save data in file "ap"
//*********** step 1, --- sweep in x-direction, Thomas algorithm used to solve tridiagonal linear equations ADI method*******
for (j = 1; j < ny + 1; j++){
for (i = 1; i < nx + 1; i++){
if (j==1){
f[i][j] = V[i][j] + (eta/2)*(V[i][j] - 2 * V[i][j] + V[i][j + 1]);
}else if (j==ny){
f[i][j] = V[i][j] + (eta/2)*(V[i][j - 1] - 2 * V[i][j] + V[i][j]);
}else{
f[i][j] = V[i][j] + (eta/2)*(V[i][j - 1] - 2 * V[i][j] + V[i][j + 1]);
}
}
}
// save the linear equation, Ax=b
//FILE *aa = fopen("aa", "w");
//double A[nx+1][ny+1] = {0};
//for (i = 1; i < nx + 1; i++){
// if (i<=nx-1){
// A[i][i + 1] = c;
// }
// if (i>=2){
// A[i][i-1] = a;
// }
// A[i][i] = b;
//}
//for (j = 1; j < ny + 1; j++){
// for (i = 1; i < nx + 1; i++){
// fprintf(aa, "%g\t", A[i][j]);
// if (i == nx){
// fprintf(aa, "\n");
// }
// }
//}
//fclose(aa);
double y_temp[nx + 1];
for (j = 1; j < ny + 1; j++){
belta[1] = c / b_1;
y_temp[1] = f[1][j] / b_1;
for (i = 2; i < nx; i++){ //i = 2,3,...,n-1
belta[i] = c/(b-a*belta[i-1]);
y_temp[i] = (f[i][j] - a*y_temp[i - 1]) / (b-a*belta[i-1]);
}
y_temp[nx] = (f[nx][j] - a*y_temp[nx - 1]) / (b_n - a*belta[nx - 1]);
V[nx][j] = y_temp[nx];
for (i = nx-1; i >=1; i--){
V[i][j] = y_temp[i] - belta[i] * V[i+1][j];
}
}
//*********** step 1 *******
//*********** step 2 *******
dt = dt_max;
for (i = 1; i < nx + 1; i++){
for (j = 1; j < ny + 1; j++){
it[i][j] = get_it(i, j);
dVdt[i][j] = -it[i][j];
}
}
//*****stimulation with a plane waves****
if (ncount >= 1 && ncount <= stimtime) { //stimulus is hold with 0.6 ms
for (i = 1; i < nx + 1; i++){
for (j = 1; j <= 5; j++){
dVdt[i][j] = dVdt[i][j] + (-st);
}
}
}
int k0, k;
for (i = 1; i < nx + 1; i++){
for (j = 1; j < ny + 1; j++){
// adaptive time step
if (dVdt[i][j] > 0){
k0 = 5;
}else{
k0 = 1;
}
k = k0 + (int)(fabs(dVdt[i][j]) + 0.5); //round the value
if (k >(int)(dt_max / dt_min)){
k = (int)(dt_max / dt_min);
}
dt = dt_max / k;
int ttt;
for (ttt = 1; ttt <= k; ttt++){ //from t to t+dt_max, t=t+dt
it[i][j] = get_it(i, j);
new_gate(i, j);//update the gate value
cai[i][j] = cai[i][j] + dcai*dt;//renew Cai
if (ncount >= 1 && ncount <= stimtime && j >= 1 && j <= 5) {
dVdt[i][j] = -it[i][j] + (-st);
}else{
dVdt[i][j] = -it[i][j];
}
V[i][j] = V[i][j] + dt*dVdt[i][j];
}
}
}
//*********** step 2 *******
//*********** step 3, sweep in y-direction, Thomas algorithm used to solve tridiagonal linear equations ADI method*******
for (i = 1; i < nx + 1; i++){
for (j = 1; j < ny + 1; j++){
if (i==1){
f[i][j] = V[i][j] + (eta / 2)*(V[i][j] - 2 * V[i][j] + V[i + 1][j]);
}else if (i==nx){
f[i][j] = V[i][j] + (eta / 2)*(V[i - 1][j] - 2 * V[i][j] + V[i][j]);
}else{
f[i][j] = V[i][j] + (eta / 2)*(V[i - 1][j] - 2 * V[i][j] + V[i + 1][j]);
}
}
}
y_temp[nx + 1] ;
for (i = 1; i < nx + 1; i++){
belta[1] = c / b_1;
y_temp[1] = f[i][1] / b_1;
for (j = 2; j < ny; j++){
belta[j] = c / (b - a*belta[j - 1]);
y_temp[j] = (f[i][j] - a*y_temp[j - 1]) / (b - a*belta[j - 1]);
}
y_temp[ny] = (f[i][ny] - a*y_temp[ny - 1]) / (b_n - a*belta[ny - 1]);
V[i][ny] = y_temp[ny];
for (j = ny - 1; j >= 1; j--){
V[i][j] = y_temp[j] - belta[j] * V[i][j + 1];
}
}
//*********** step 3 *******
t = t + dt_max;
//***********trancation 1/2 of the plane wave to generate a spiral wave******
//if (ncount == cutcount){
// for (i = 1; i < nx / 2; i++){
// for (j = 1; j < ny; j++){
// V[i][j] = -88.654973; // Initial Voltage (mv)
// m[i][j] = 0.000838;
// h[i][j] = 0.993336;
// jj[i][j] = 0.995484;
// d[i][j] = 0.000003;
// f[i][j] = 0.999745;
// X[i][j] = 0.000129;
// cai[i][j] = 0.0002; // Initial Intracellular Ca (mM)
// }
// }
//}
}
end = clock();
double time_used = (double)(end - start) / CLK_TCK;
conduction_t = (right_peak - left_peak)*0.001; //condution time from left side to right side
fprintf(fevaluation, "%g\n%g\n%g\n", time_used, APD90, dx*nx / conduction_t);
fclose(fevaluation);
fclose(single_ap);
}
//performance
void performance(){
fprintf(single_ap, "%g\n", V[nx / 2][ny / 2]);
if (V[nx/2][1] - V_left > 0){
left_peak = t; // peak time at j=1
V_left = V[nx / 2][1];
}
if (V[nx/2][ny] - V_right > 0){
right_peak = t; // peak time at j=ny
V_right = V[nx / 2][ny];
}
if (V[nx / 2][ny / 2]>Vmax)
Vmax = V[nx / 2][ny / 2];
if (V[nx / 2][ny / 2] >= (Vmax - 0.9*(Vmax - (-88.654973))))
APD90 = t; // Time of 90% Repolarization
}
/********************************************************/
/* Functions that describe the currents begin here */
double get_it(int i, int j){
comp_ina(i, j);
comp_ical(i, j);
comp_ik(i, j);
comp_ik1(i, j);
comp_ikp(i, j);
comp_ib(i, j);
comp_it(i, j);
return it[i][j];
}
// renew gate value when t+dt
void new_gate(int i, int j){
m[i][j] = m0[i][j];
h[i][j] = h0[i][j];
jj[i][j] = jj0[i][j];
d[i][j] = d0[i][j];
f[i][j] = f0[i][j];
X[i][j] = X0[i][j];
}
//Fast sodium current
void comp_ina(int i, int j) {
gna = 23;
ena = ((R*temp) / frdy)*log(nao / nai);
am = 0.32*(V[i][j] + 47.13) / (1 - exp(-0.1*(V[i][j] + 47.13)));
bm = 0.08*exp(-V[i][j] / 11);
if (V[i][j] < -40) {
ah = 0.135*exp((80 + V[i][j]) / -6.8);
bh = 3.56*exp(0.079*V[i][j]) + 310000 * exp(0.35*V[i][j]);
aj = (-127140 * exp(0.2444*V[i][j]) - 0.00003474*exp(-0.04391*V[i][j]))*((V[i][j] + 37.78) / (1 + exp(0.311*(V[i][j] + 79.23))));
bj = (0.1212*exp(-0.01052*V[i][j])) / (1 + exp(-0.1378*(V[i][j] + 40.14)));
}
else {
ah = 0;
bh = 1 / (0.13*(1 + exp((V[i][j] + 10.66) / -11.1)));
aj = 0;
bj = (0.3*exp(-0.0000002535*V[i][j])) / (1 + exp(-0.1*(V[i][j] + 32)));
}
mtau = 1 / (am + bm);
htau = 1 / (ah + bh);
jtau = 1 / (aj + bj);
mss = am*mtau;
hss = ah*htau;
jss = aj*jtau;
m0[i][j] = mss - (mss - m[i][j])*exp(-dt / mtau);
h0[i][j] = hss - (hss - h[i][j])*exp(-dt / htau);
jj0[i][j] = jss - (jss - jj[i][j])*exp(-dt / jtau);
ina[i][j] = gna*m0[i][j] * m0[i][j] * m0[i][j] * h0[i][j] * jj0[i][j] * (V[i][j] - ena);
}
//Slow inward current
void comp_ical(int i, int j) {
esi[i][j] = 7.7 - 13.0287*log(cai[i][j]);
ad = 50 * 0.095*exp(-0.01*(V[i][j] - 5)) / (1 + exp(-0.072*(V[i][j] - 5)));
bd = 50 * 0.07*exp(-0.017*(V[i][j] + 44)) / (1 + exp(0.05*(V[i][j] + 44)));
af = 50 * 0.012*exp(-0.008*(V[i][j] + 28)) / (1 + exp(0.15*(V[i][j] + 28)));
bf = 50 * 0.0065*exp(-0.02*(V[i][j] + 30)) / (1 + exp(-0.2*(V[i][j] + 30)));
taud = 1 / (ad + bd);
tauf = 1 / (af + bf);
dss = ad*taud;
fss = af*tauf;
d0[i][j] = dss - (dss - d[i][j])*exp(-dt / taud);
f0[i][j] = fss - (fss - f[i][j])*exp(-dt / tauf);
isi[i][j] = 0.09*d0[i][j] * f0[i][j] * (V[i][j] - esi[i][j]);
dcai = -0.0001*isi[i][j] + 0.07*(0.0001 - cai[i][j]);
//cai[i][j] = cai[i][j] + dcai*dt;
}
//Time-dependent potassium current
void comp_ik(int i, int j) {
gk = 0.282*sqrt(ko / 5.4);
ek = ((R*temp) / frdy)*log(ko / ki);
//double prnak = 0.01833;
//ek = ((R*temp) / frdy)*log((ko + prnak*nao) / (ki + prnak*nai));
ax = 50 * 0.0005*exp(0.083*(V[i][j] + 50)) / (1 + exp(0.057*(V[i][j] + 50)));
bx = 50 * 0.0013*exp(-0.06*(V[i][j] + 20)) / (1 + exp(-0.04*(V[i][j] + 20)));
taux = 1 / (ax + bx);
xss = ax*taux;
X0[i][j] = xss - (xss - X[i][j])*exp(-dt / taux);
if (V[i][j] > -100) {
Xi = 2.837*(exp(0.04*(V[i][j] + 77)) - 1) / ((V[i][j] + 77)*exp(0.04*(V[i][j] + 35)));
}
else {
Xi = 1;
}
ik[i][j] = gk*X0[i][j] * Xi*(V[i][j] - ek);
}
//Time-independent potassium current
void comp_ik1(int i, int j) {
gk1 = 0.6047*(sqrt(ko / 5.4));
ek1 = ((R*temp) / frdy)*log(ko / ki);
ak1 = 1.02 / (1 + exp(0.2385*(V[i][j] - ek1 - 59.215)));
bk1 = (0.49124*exp(0.08032*(V[i][j] - ek1 + 5.476)) + exp(0.06175*(V[i][j] - ek1 - 594.31))) / (1 + exp(-0.5143*(V[i][j] - ek1 + 4.753)));
K1ss = ak1 / (ak1 + bk1);
ik1[i][j] = gk1*K1ss*(V[i][j] - ek1);
}
//Plateau potassium current
void comp_ikp(int i, int j) {
gkp = 0.0183;
ekp = ek1;
kp = 1 / (1 + exp((7.488 - V[i][j]) / 5.98));
ikp[i][j] = gkp*kp*(V[i][j] - ekp);
}
//Background current
void comp_ib(int i, int j) {
ib[i][j] = 0.03921*(V[i][j] + 59.87);
}
/* Total sum of currents is calculated here, if the time is between
stimtime = 0 and stimtime = 0.5 (ms), a stimulus is applied */
//%刺激电流的持续时间限制在0-0.5之间,超过刺激电流就置零
void comp_it(int i, int j) {
//当时间t到达10.01ms后,刺激电流才引入
//
// if (t >= 5 && t<(5 + 0.5)) {
// it[i][j] = st + ina[i][j] + isi[i][j] + ik[i][j] + ik1[i][j] + ikp[i][j] + ib[i][j];
// }else {
it[i][j] = ina[i][j] + isi[i][j] + ik[i][j] + ik1[i][j] + ikp[i][j] + ib[i][j];
// }
}
/* Values are printed to a file called ap. The voltage and
currents can be plotted versus time using graphing software. */
//void prttofile() {
// if (t>(0) && t<(bcl*beats))
// {
// fprintf(ap, "%.3f\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\n",
// t, v, nai, ki, cai, ina, isi, ikr, iki, ikp, ib);
// //printf("%.5f\t%g\n", t, v);
// //printf("%.3f\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\n",
// // t, v, nai, ki, cai, ina, isi, ikr, iki, ikp, ib);
// }
// //nai, ki, cai are the Intracellular Concentration of nai, ki, cai
//}