forked from Yukui-1999/ECCL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcmr_pretrain.py
executable file
·422 lines (365 loc) · 19.1 KB
/
cmr_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import argparse
import datetime
import json
from typing import Tuple
import numpy as np
import os
import time
from pathlib import Path
import model.CMREncoder as CMREncoder
import sys
import torch
from torch.utils.data import Subset, ConcatDataset
import torch.backends.cudnn as cudnn
import wandb
import model.resnet as resnet
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from model.Trimodal_clip import Trimodal_clip
# sys.path.append("..")
import timm
import torch.nn as nn
from data.mutimodal_dataset import mutimodal_dataset
import timm.optim.optim_factory as optim_factory
import pytorchvideo.models.resnet
import utils.misc as misc
from utils.misc import NativeScalerWithGradNormCount as NativeScaler
from utils.callbacks import EarlyStop
from model.swin_transformer import SwinTransformer
from cmr_pretrain_engine import train_one_epoch, evaluate
# from engine_pretrain import train_one_epoch, evaluate
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_args_parser():
parser = argparse.ArgumentParser('MAE pre-training', add_help=False)
# Basic parameters
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=400, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory '
'constraints)')
# SNP parameters
parser.add_argument('--snp_size', default=(49, 120), type=Tuple, help='ecg input size')
parser.add_argument('--use_snp', default=False, type=str2bool, help='use_snp')
#downstream task
parser.add_argument('--downstream', default='regression', type=str, help='downstream task')
parser.add_argument('--regression_dim',default=82,type=int,help='regression_dim')
parser.add_argument('--classification_dis',default='I21',type=str,help='classification_dis')
# Model parameters
parser.add_argument('--latent_dim', default=256, type=int, metavar='N',
help='latent_dim')
# CMR Model parameters
parser.add_argument('--cmr_model', default='vit_base_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--cmr_inchannels', default=50, type=int, metavar='N',
help='cmr_inchannels')
parser.add_argument('--cmr_pretrained', default=False, type=str2bool,
help='cmr_pretrained or not')
parser.add_argument('--img_size', default=80, type=int, metavar='N', help='img_size of cmr')
parser.add_argument('--cmr_patch_height', type=int, default=8, metavar='N',
help='cmr patch height')
parser.add_argument('--cmr_patch_width', type=int, default=8, metavar='N',
help='cmr patch width')
parser.add_argument('--cmr_drop_out', default=0.0, type=float)
parser.add_argument('--cmr_use_seg', default=False, type=str2bool, help='whether use seg mask')
parser.add_argument('--cmr_use_continue', default=True, type=str2bool, help='whether use continue data')
# Augmentation parameters
parser.add_argument('--input_size', type=tuple, default=(12, 5000))
parser.add_argument('--timeFlip', type=float, default=0.33)
parser.add_argument('--signFlip', type=float, default=0.33)
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
help='epochs to warmup LR')
# Callback parameters
parser.add_argument('--patience', default=10, type=float,
help='Early stopping whether val is worse than train for specified nb of epochs (default: -1, i.e. no early stopping)')
parser.add_argument('--max_delta', default=0.015, type=float,
help='Early stopping threshold (val has to be worse than (train+delta)) (default: 0)')
# Dataset parameters
parser.add_argument('--data_path',
default='/home/dingzhengyao/data/ECG_CMR/train_data_dict_v7.pt',
type=str,
help='dataset path')
parser.add_argument('--val_data_path',
default='/home/dingzhengyao/data/ECG_CMR/val_data_dict_v7.pt',
type=str,
help='validation dataset path')
parser.add_argument('--test_data_path',
default='/home/dingzhengyao/data/ECG_CMR/test_data_dict_v7.pt',
type=str,
help='test dataset path')
parser.add_argument('--output_dir', default='/mnt/data/dingzhengyao/work/checkpoint/preject_version1/cmr_pretrain_output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='/mnt/data/dingzhengyao/work/checkpoint/preject_version1/cmr_pretrain_log_dir',
help='path where to tensorboard log')
parser.add_argument('--wandb', type=str2bool, default=True)
parser.add_argument('--wandb_project', default='CMR_pretrain',
help='project where to wandb log')
# parser.add_argument('--wandb_dir', default='/mnt/data/dingzhengyao/work/checkpoint/ECG_CMR/wandb/1002',
# help='project where to wandb save')
parser.add_argument('--wandb_id', default='1001', type=str,
help='id of the current run')
parser.add_argument('--device', default='cuda:3',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--pin_mem', action='store_true', default=True,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
# Distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
return parser
def main(args):
device = torch.device(args.device)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# load data
dataset_train = mutimodal_dataset(data_path=args.data_path, transform=True, augment=True, args=args,downstream=args.downstream)
data_scaler = dataset_train.get_scaler()
dataset_val = mutimodal_dataset(data_path=args.val_data_path, transform=True, augment=False, args=args,scaler=data_scaler,downstream=args.downstream)
print("Training set size: ", len(dataset_train))
print("Validation set size: ", len(dataset_val))
if args.downstream == 'classification':
args.regression_dim = 1
if args.classification_dis == 'I21':
class_num = 5
elif args.classification_dis == 'I42':
class_num = 6
elif args.classification_dis == 'I48':
class_num = 7
elif args.classification_dis == 'I50':
class_num = 8
positive_indices = []
negative_indices = []
for i in range(len(dataset_train)):
label = dataset_train[i][class_num]
if label == 1:
positive_indices.append(i)
else:
negative_indices.append(i)
# positive_indices = [i for i in range(len(dataset_train)) if dataset_train[i][class_num] == 1]
# negative_indices = [i for i in range(len(dataset_train)) if dataset_train[i][class_num] == 0]
print(f'positive_indices:{len(positive_indices)},negative_indices:{len(negative_indices)}')
# I21 positive_indices:1573,negative_indices:23335
# 根据1:2的比例计算每个组合需要的阴性样本数量
neg_samples_per_group = len(positive_indices) * 2
# 计算可以形成的组合数量
num_groups = len(negative_indices) // neg_samples_per_group
negative_splits = [negative_indices[i * neg_samples_per_group: (i + 1) * neg_samples_per_group] for i in
range(num_groups)]
if len(negative_indices) % neg_samples_per_group != 0:
remaining_negatives = negative_indices[num_groups * neg_samples_per_group:]
negative_splits[-1].extend(remaining_negatives)
if args.wandb:
config = vars(args)
if args.wandb_id:
wandb.init(project=args.wandb_project, id=args.wandb_id, config=config)
else:
wandb.init(project=args.wandb_project, config=config)
if args.downstream == 'regression':
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
shuffle=True,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val,
shuffle=False,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
if args.cmr_model.startswith('resnet'):
model = resnet.__dict__[args.cmr_model](
in_channels=args.cmr_inchannels,
latent_dim=args.regression_dim,
pretrained=args.cmr_pretrained,
)
if args.cmr_model.startswith('vit'):
model = CMREncoder.__dict__[args.cmr_model](
in_chans=args.cmr_inchannels,
img_size=args.img_size,
num_classes=args.regression_dim,
drop_rate=args.cmr_drop_out,
args=args,
)
if args.cmr_model.startswith('3d'):
model = pytorchvideo.models.resnet.create_resnet(
input_channel=1, # RGB input from Kinetics
model_depth=50, # For the tutorial let's just use a 50 layer network
model_num_class=82, # Kinetics has 400 classes so we need out final head to align
norm=nn.BatchNorm3d,
activation=nn.ReLU,
)
if args.cmr_model.startswith('swin'):
model = SwinTransformer(img_size=(224, 224),
patch_size=(4, 4),
in_chans=50,
num_classes=args.regression_dim,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.1,
attn_drop_rate=0.1,
drop_path_rate=0.2,
norm_layer=nn.LayerNorm,
ape=False,
patch_norm=True,
use_checkpoint=False,
use_snp=args.use_snp,)
model.to(device)
print(f'model device:{next(model.parameters()).device}')
# state_dict = model.state_dict()
# for name, param in state_dict.items():
# print(f'Parameter name: {name}')
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Number of params (M): %.2f' % (n_parameters / 1.e6))
eff_batch_size = args.batch_size * args.accum_iter
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 4
print("base lr: %.2e" % (args.lr * 4 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
param_groups = optim_factory.add_weight_decay(model, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
misc.load_model(args=args, model_without_ddp=model, optimizer=optimizer, loss_scaler=loss_scaler)
# Define callbacks
early_stop = EarlyStop(patience=args.patience, max_delta=args.max_delta)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
eval_criterion = "correlation"
best_stats = {'correlation': -np.inf}
if args.downstream == 'classification':
eval_criterion = "auc"
best_stats = {'auc': -np.inf}
# ecg_data = torch.randn(2,1,12,5000).to(device)
# tar_data = torch.randn(2,195).to(device)
# cmr_data = torch.randn(2,10,80,80).to(device)
# total_loss = model(ecg_data,tar_data,cmr_data,is_train=True)
# print(f'ecg:{ecg.shape},tar:{tar.shape},cmr:{cmr.shape}')
# print(f'total_loss:{total_loss}')
# return 0
for epoch in range(args.start_epoch, args.epochs):
if args.downstream == 'classification':
for neg_split in negative_splits:
# 合并阳性样本索引和当前阴性子集索引进行训练
combined_indices = positive_indices + neg_split
balanced_dataset = Subset(dataset_train, combined_indices)
data_loader_train = torch.utils.data.DataLoader(balanced_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,)
train_stats, train_history = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
args=args
)
val_stats, test_history = evaluate(data_loader_val, model, device, epoch, args=args)
print(f"Loss of the network on the {len(dataset_val)} val dataset: {val_stats['loss']:.4f}")
if eval_criterion == "loss":
if early_stop.evaluate_decreasing_metric(val_metric=val_stats[eval_criterion]):
break
if args.output_dir and val_stats[eval_criterion] <= best_stats[eval_criterion]:
misc.save_best_model(
args=args, model=model, model_without_ddp=model, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, test_stats=val_stats, evaluation_criterion=eval_criterion)
else:
if early_stop.evaluate_increasing_metric(val_metric=val_stats[eval_criterion]):
break
if args.output_dir and val_stats[eval_criterion] >= best_stats[eval_criterion]:
misc.save_best_model(
args=args, model=model, model_without_ddp=model, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, test_stats=val_stats, evaluation_criterion=eval_criterion)
best_stats['auc'] = max(best_stats['auc'], val_stats['auc'])
if args.wandb:
wandb.log(train_history | test_history)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
else:
train_stats, train_history = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
args=args
)
val_stats, test_history = evaluate(data_loader_val, model, device, epoch, args=args)
print(f"Loss of the network on the {len(dataset_val)} val dataset: {val_stats['loss']:.4f}")
if eval_criterion == "loss":
if early_stop.evaluate_decreasing_metric(val_metric=val_stats[eval_criterion]):
break
if args.output_dir and val_stats[eval_criterion] <= best_stats[eval_criterion]:
misc.save_best_model(
args=args, model=model, model_without_ddp=model, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, test_stats=val_stats, evaluation_criterion=eval_criterion)
else:
if early_stop.evaluate_increasing_metric(val_metric=val_stats[eval_criterion]):
break
if args.output_dir and val_stats[eval_criterion] >= best_stats[eval_criterion]:
misc.save_best_model(
args=args, model=model, model_without_ddp=model, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, test_stats=val_stats, evaluation_criterion=eval_criterion)
best_stats['correlation'] = max(best_stats['correlation'], val_stats['correlation'])
if args.wandb:
wandb.log(train_history | test_history)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
return 0
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.cmr_model.startswith('swin') or args.cmr_model.startswith('vit_base_patch16'):
args.resizeshape = 224
args.img_size = 224
else:
args.resizeshape = 80
args.cmr_patch_num = (args.img_size // args.cmr_patch_width) * (args.img_size // args.cmr_patch_height) + 1
args.log_dir = os.path.join(args.log_dir, args.wandb_id)
args.output_dir = os.path.join(args.output_dir, args.wandb_id)
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)