Skip to content

Latest commit

 

History

History
119 lines (90 loc) · 2.63 KB

README.md

File metadata and controls

119 lines (90 loc) · 2.63 KB

minitorch

Implement a minimal library from scratch to help understand the Dynamic Computaional Graph of PyTorch.

TODO

  • support CUDA

Requirements

  1. Create virtual environment

    python3 -m venv minitorch-env
  2. Activate virtual environment

    source minitorch-env/bin/activate
  3. Install dependencies

    pip install -r requirements.txt

Quick Start

  1. Clone the codebase

    git clone git@github.com:zhouzaida/minitorch.git
  2. Install or develop

    python setup.py install
    # or
    python setup.py develop

Examples

  • create Tensor

    from minitorch import Tensor
    
    t1 = Tensor(2.0)
    t2 = Tensor(3.0)
    t3 = t1 + t2
    print(t3)  # Tensor(3.0, requires_grad=False)
  • autograd

    from minitorch import Tensor
    
    t1 = Tensor(2.0, requires_grad=True)
    t2 = Tensor(3.0)
    t3 = t1 + t2
    t4 = t1 * t3
    t4.backward()
    print(f"t1 grad: {t1.grad}")  # t1 grad: Tensor(7.0, requires_grad=False)
    print(f"t2 grad: {t2.grad}")  # t2 grad: None
  • gradient for broadcast

    from minitorch import Tensor
    
    t1 = Tensor([1.0, 2.0], requires_grad=True)
    t2 = Tensor(2.0, requires_grad=True)
    t3 = t1 + t2
    t3.backward(Tensor([1.0, 1.0]))
    print(f"t1 grad: {t1.grad}")  # t1 grad: Tensor([1., 1.], requires_grad=False)
    print(f"t2 grad: {t2.grad}")  # t2 grad: Tensor(2.0, requires_grad=False)
  • create neural network

    import minitorch
    import minitorch.nn as nn
    
    input = minitorch.rand(2, 3)
    linear = nn.Linear(3, 5, bias=True)
    output = nn.linear(input)
    print(f"output: {output}")
    
    class Model(nn.Module):
    
        def __init__(self):
            super().__init__()
            self.linear_1 = nn.Linear(3, 5, bias=True)
            self.linear_2 = nn.Linear(5, 6)
    
        def forward(self, input):
            output = self.linear_1(input)
            output = self.linear_2(output)
            return output
    
    input = minitorch.rand(2, 3)
    model = Model()
    output = model(input)
    print(f"output: {output}")
    
    for name, module in model.named_modules(prefix='model'):
        print(f"{name}: {module}")

Tools

References