-
Notifications
You must be signed in to change notification settings - Fork 24
/
0492-construct-the-rectangle.js
70 lines (55 loc) · 2.31 KB
/
0492-construct-the-rectangle.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// 492. Construct the Rectangle
// Easy 48%
// For a web developer, it is very important to know how to design a web page's
// size. So, given a specific rectangular web page’s area, your job by now is to
// design a rectangular web page, whose length L and width W satisfy the
// following requirements:
// 1. The area of the rectangular web page you designed must equal to the given
// target area.
// 2. The width W should not be larger than the length L, which means L >= W.
// 3. The difference between length L and width W should be as small as possible.
// You need to output the length L and the width W of the web page you designed
// in sequence.
// Example:
// Input: 4
// Output: [2, 2]
// Explanation: The target area is 4, and all the possible ways to construct it
// are [1,4], [2,2], [4,1].
// But according to requirement 2, [1,4] is illegal; according to requirement 3,
// [4,1] is not optimal compared to [2,2]. So the length L is 2, and the width W
// is 2.
// Note:
// The given area won't exceed 10,000,000 and is a positive integer
// The web page's width and length you designed must be positive integers.
/**
* @param {number} area
* @return {number[]}
*/
const constructRectangle = function(area) {
let i = Math.trunc(Math.sqrt(area))
while (i > 1 && area % i !== 0) i--
return [area / i, i]
}
;[
4, // [2,2]
1, // [1,1]
].forEach(area => {
console.log(constructRectangle(area))
})
// Solution:
// 求数组 [a, b],满足 a * b = area,且在所有满足的a,b中,|a - b|最小
// 首先满足的a,b,即是 area 的因子对。
// 找出 area 的因子对,假设 a <= b,那么 a 可以从 1 到 sqrt(area)
// 因为 a <= b; a * a <= a * b = area; a <= sqrt(area)
// 再找 |a - b| 最小。
// 假设有两对满足的因子对分别为[a_1, b_1],[a_2, b_2],
// 且 a_i <= b_i,a_1 < a_2
// 因为假设了 a_i <= b_i,所以 |a - b| 实际为 b - a
// 比较 (b_1 - a_1) 和 (b_2 - a_2)
// (b_1 - a_1) - (b_2 - a_2) = (b_1 - b_2) + (a_2 - a_1)
// 因为 a_2 > a_1,所以 c / a_1 > c / a_2,即 b_1 - b_2 > 0
// 又因为 a_2 - a_1 > 0
// 所以 (b_1 - a_1) - (b_2 - a_2) > 0
// 因此可以确定,a 越大,|a - b| 越小
// 因此只需找 a 最大时的因子对,就行了。
// Submission Result: Accepted