-
Notifications
You must be signed in to change notification settings - Fork 13
/
eval_3dmatch.py
312 lines (264 loc) · 14.7 KB
/
eval_3dmatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import argparse
import copy
import glob
import numpy as np
import os
import pdb
import torch
import open3d as o3d
from easydict import EasyDict as edict
from tqdm import tqdm
from data import ThreeDMatch, get_dataloader
from models import architectures, NgeNet, vote
from utils import decode_config, npy2pcd, pcd2npy, execute_global_registration, \
npy2feat, vis_plys, setup_seed, fmat, to_tensor, get_blue, \
get_yellow
from metrics import inlier_ratio_core, Metric
from rich.console import Console
from rich.table import Table
CUR = os.path.dirname(os.path.abspath(__file__))
def get_scene_split(file_path):
test_cats = ['7-scenes-redkitchen',
'sun3d-home_at-home_at_scan1_2013_jan_1',
'sun3d-home_md-home_md_scan9_2012_sep_30',
'sun3d-hotel_uc-scan3',
'sun3d-hotel_umd-maryland_hotel1',
'sun3d-hotel_umd-maryland_hotel3',
'sun3d-mit_76_studyroom-76-1studyroom2',
'sun3d-mit_lab_hj-lab_hj_tea_nov_2_2012_scan1_erika']
c = 0
splits, ply_coors_ids, pairs_ids = [], [], []
for cat in test_cats:
with open(os.path.join(file_path, cat, 'gt.log'), 'r') as f:
lines = f.readlines()
stride = len(lines) // 5
for line in lines[::5]:
item = list(map(int, line.strip().split('\t')))
ply_coors_ids.append(item)
splits.append([c, c + stride])
c += stride
return splits, np.array(ply_coors_ids, dtype=np.int64), test_cats
def print_table(scenes, scene_recall, error_r, error_t):
error_r_mean = np.array([np.mean(item) for item in error_r])
error_r_median = np.array([np.median(item) for item in error_r])
error_t_mean = np.array([np.mean(item) for item in error_t])
error_t_median = np.array([np.median(item) for item in error_t])
console = Console()
table = Table(show_header=True, header_style="bold")
columns = ["scene", "recall", "rre", "rte"]
for col in columns:
table.add_column(col)
values = np.concatenate([scene_recall[:,None], error_r_median[:, None], error_t_median[:, None]], axis=1)
for sid, vals in zip(scenes, values):
table.add_row(sid, *[f'{v:.3f}' for v in vals])
scene_recall_mean = np.mean(scene_recall)
scene_recall_std = np.std(scene_recall)
rre_mean = np.mean(error_r_mean)
rre_std = np.std(error_r_median)
rte_mean = np.mean(error_t_mean)
rte_std = np.std(error_t_median)
table.add_row('avg', *[f'{scene_recall_mean:.3f} +- {scene_recall_std:.3f}',
f'{rre_mean:.3f} +- {rre_std:.3f}',
f'{rte_mean:.3f} +- {rte_std:.3f}'])
console.print(table)
def main(args):
setup_seed(22)
config = decode_config(os.path.join(CUR, 'configs', 'threedmatch.yaml'))
config = edict(config)
config.architecture = architectures[config.dataset]
config.num_workers = 4
test_dataset = ThreeDMatch(root=args.data_root,
split=args.benchmark,
aug=False,
overlap_radius=config.overlap_radius)
test_dataloader, neighborhood_limits = get_dataloader(config=config,
dataset=test_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=False,
neighborhood_limits=None)
model = NgeNet(config)
use_cuda = not args.no_cuda
if use_cuda:
model = model.cuda()
model.load_state_dict(torch.load(args.checkpoint))
else:
model.load_state_dict(
torch.load(args.checkpoint, map_location=torch.device('cpu')))
model.eval()
fmr_threshold = 0.05
rmse_threshold = 0.2
inlier_ratios, mutual_inlier_ratios = [], []
mutual_feature_match_recalls, feature_match_recalls = [], []
Ts = []
metric = Metric()
dist_thresh_maps = {
'5000': config.first_subsampling_dl,
'2500': config.first_subsampling_dl * 1.5,
'1000': config.first_subsampling_dl * 1.5,
'500': config.first_subsampling_dl * 1.5,
'250': config.first_subsampling_dl * 2,
}
with torch.no_grad():
for pair_ind, inputs in enumerate(tqdm(test_dataloader)):
if use_cuda:
for k, v in inputs.items():
if isinstance(v, list):
for i in range(len(v)):
inputs[k][i] = inputs[k][i].cuda()
else:
inputs[k] = inputs[k].cuda()
batched_feats_h, batched_feats_m, batched_feats_l = model(inputs)
stack_points = inputs['points']
stack_lengths = inputs['stacked_lengths']
coords_src = stack_points[0][:stack_lengths[0][0]]
coords_tgt = stack_points[0][stack_lengths[0][0]:]
feats_src_h = batched_feats_h[:stack_lengths[0][0]]
feats_tgt_h = batched_feats_h[stack_lengths[0][0]:]
feats_src_m = batched_feats_m[:stack_lengths[0][0]]
feats_tgt_m = batched_feats_m[stack_lengths[0][0]:]
feats_src_l = batched_feats_l[:stack_lengths[0][0]]
feats_tgt_l = batched_feats_l[stack_lengths[0][0]:]
coors = inputs['coors'][0] # list, [coors1, coors2, ..], preparation for batchsize > 1
transf = inputs['transf'][0] # (1, 4, 4), preparation for batchsize > 1
coors = coors.detach().cpu().numpy()
T = transf.detach().cpu().numpy()
source_npy = coords_src.detach().cpu().numpy()
target_npy = coords_tgt.detach().cpu().numpy()
source_npy_raw = copy.deepcopy(source_npy)
target_npy_raw = copy.deepcopy(target_npy)
source_feats_h = feats_src_h[:, :-2].detach().cpu().numpy()
target_feats_h = feats_tgt_h[:, :-2].detach().cpu().numpy()
source_feats_m = feats_src_m.detach().cpu().numpy()
target_feats_m = feats_tgt_m.detach().cpu().numpy()
source_feats_l = feats_src_l.detach().cpu().numpy()
target_feats_l = feats_tgt_l.detach().cpu().numpy()
source_overlap_scores = feats_src_h[:, -2].detach().cpu().numpy()
target_overlap_scores = feats_tgt_h[:, -2].detach().cpu().numpy()
source_saliency_scores = feats_src_h[:, -1].detach().cpu().numpy()
target_saliency_scores = feats_tgt_h[:, -1].detach().cpu().numpy()
source_scores = source_overlap_scores * source_saliency_scores
target_scores = target_overlap_scores * target_saliency_scores
npoints = args.npts
if source_npy.shape[0] > npoints:
p = source_scores / np.sum(source_scores)
idx = np.random.choice(len(source_npy), size=npoints, replace=False, p=p)
source_npy = source_npy[idx]
source_feats_h = source_feats_h[idx]
source_feats_m = source_feats_m[idx]
source_feats_l = source_feats_l[idx]
if target_npy.shape[0] > npoints:
p = target_scores / np.sum(target_scores)
idx = np.random.choice(len(target_npy), size=npoints, replace=False, p=p)
target_npy = target_npy[idx]
target_feats_h = target_feats_h[idx]
target_feats_m = target_feats_m[idx]
target_feats_l = target_feats_l[idx]
after_vote = vote(source_npy=source_npy,
target_npy=target_npy,
source_feats=[source_feats_h, source_feats_m, source_feats_l],
target_feats=[target_feats_h, target_feats_m, target_feats_l],
voxel_size=config.first_subsampling_dl,
use_cuda=use_cuda)
source_npy, target_npy, source_feats_npy, target_feats_npy = after_vote
M = torch.cdist(to_tensor(source_feats_npy, use_cuda), to_tensor(target_feats_npy, use_cuda))
row_max_inds = torch.min(M, dim=-1)[1].cpu().numpy()
col_max_inds = torch.min(M, dim=0)[1].cpu().numpy()
inlier_ratio, mutual_inlier_ratio = inlier_ratio_core(points_src=source_npy,
points_tgt=target_npy,
row_max_inds=row_max_inds,
col_max_inds=col_max_inds,
transf=transf.detach().cpu().numpy())
inlier_ratios.append(inlier_ratio)
mutual_inlier_ratios.append(mutual_inlier_ratio)
feature_match_recalls.append(inlier_ratio > fmr_threshold)
mutual_feature_match_recalls.append(mutual_inlier_ratio > fmr_threshold)
source, target = npy2pcd(source_npy), npy2pcd(target_npy)
source_feats, target_feats = npy2feat(source_feats_npy), npy2feat(target_feats_npy)
pred_T, estimate = execute_global_registration(source=source,
target=target,
source_feats=source_feats,
target_feats=target_feats,
voxel_size=dist_thresh_maps[str(args.npts)])
Ts.append(pred_T)
if args.vis:
source_ply = npy2pcd(source_npy_raw)
source_ply.paint_uniform_color(get_yellow())
estimate_ply = copy.deepcopy(source_ply).transform(pred_T)
target_ply = npy2pcd(target_npy_raw)
target_ply.paint_uniform_color(get_blue())
vis_plys([target_ply, estimate_ply], need_color=False)
Ts = np.array(Ts)
file_path = os.path.join(CUR, 'data', 'ThreeDMatch', 'gt', args.benchmark)
splits, ply_coors_ids, scenes = get_scene_split(file_path=file_path)
valid_idx = np.abs(ply_coors_ids[:, 0] - ply_coors_ids[:, 1]) > 1
n_valids = []
cat_inlier_ratios, cat_mutual_inlier_ratios = [], []
cat_mutual_feature_match_recalls, cat_feature_match_recalls = [], []
cat_registration_recalls = []
for i, split in enumerate(splits):
scene = scenes[i]
cur_ply_coors_ids = ply_coors_ids[split[0]:split[1]]
cur_saved_dir = os.path.join(args.saved_path, scene)
os.makedirs(cur_saved_dir, exist_ok=True)
cur_Ts = Ts[split[0]:split[1]]
with open(os.path.join(cur_saved_dir, 'est.log'), 'w') as f:
for idx in range(cur_Ts.shape[0]):
p = cur_Ts[idx,:,:].tolist()
f.write('\t'.join(map(str, cur_ply_coors_ids[idx])) + '\n')
f.write('\n'.join('\t'.join(map('{0:.12f}'.format, p[i])) for i in range(4)))
f.write('\n')
m_inlier_ratio = np.mean(inlier_ratios[split[0]:split[1]])
m_mutual_inlier_ratio = np.mean(mutual_inlier_ratios[split[0]:split[1]])
m_feature_match_recall = np.mean(feature_match_recalls[split[0]:split[1]])
m_mutual_feature_match_recall = np.mean(mutual_feature_match_recalls[split[0]:split[1]])
valid_idx_split = valid_idx[split[0]:split[1]]
n_valids.append(np.sum(valid_idx_split))
cat_inlier_ratios.append(m_inlier_ratio)
cat_mutual_inlier_ratios.append(m_mutual_inlier_ratio)
cat_feature_match_recalls.append(m_feature_match_recall)
cat_mutual_feature_match_recalls.append(m_mutual_feature_match_recall)
print('\n', '='*20, f'Results on {args.benchmark}', '='*20, '\n')
print(f'[1]. Scene Recall (correspondences RMSE below 0.2) among {np.sum(n_valids)} pairs:')
scene_recall, error_r, error_t, pair_recall, dsc_error_r, dsc_error_t, error_r_all, \
error_t_all, n_valids, n_totals = \
metric.benchmark(est_folder=args.saved_path,
gt_folder=os.path.join(CUR, 'data', 'ThreeDMatch', 'gt', args.benchmark))
print_table(scenes, scene_recall, error_r, error_t)
print(f'[2]. Pair-level (correspondences RMSE below 0.2) among {np.sum(n_valids)} pairs:')
recall = np.sum(scene_recall * n_valids) / np.sum(n_valids)
rre = np.sum([sum(item) for item in error_r]) / np.sum([len(item) for item in error_r])
rte = np.sum([sum(item) for item in error_t]) / np.sum([len(item) for item in error_t])
print(f'- Recall: {fmat(recall)}')
print(f'- RRE: {fmat(rre)}')
print(f'- RTE: {fmat(rte)}')
print(f'[3]. Pair-level (under 0.3m && 15 degrees): among {np.sum(n_totals)} pairs:')
dsc_recall = np.sum(pair_recall * n_totals) / np.sum(n_totals)
dsc_rre = np.sum([sum(item) for item in dsc_error_r]) / np.sum([len(item) for item in dsc_error_r])
dsc_rte = np.sum([sum(item) for item in dsc_error_t]) / np.sum([len(item) for item in dsc_error_t])
all_rre = np.sum([sum(item) for item in error_r_all]) / np.sum([len(item) for item in error_r_all])
all_rte = np.sum([sum(item) for item in error_t_all]) / np.sum([len(item) for item in error_t_all])
print(f'- Recall: {fmat(dsc_recall)}')
print(f'- RRE (Successful): {fmat(dsc_rre)}')
print(f'- RTE (Successful): {fmat(dsc_rte)}')
print(f'- RRE (ALL): {fmat(all_rre)}')
print(f'- RTE (ALL): {fmat(all_rte)}')
print('[4]. Inlier ratio and Feature matching recall: ')
print("- Inlier ratio: ", fmat(np.mean(cat_inlier_ratios)))
print("- Mutual inlier ratio: ", fmat(np.mean(cat_mutual_inlier_ratios)))
print("- Feature match recall: ", fmat(np.mean(cat_feature_match_recalls)))
print("- Mutual feature match recall: ", fmat(np.mean(cat_mutual_feature_match_recalls)))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Configuration Parameters')
parser.add_argument('--benchmark', default='3DMatch', help='3DMatch or 3DLoMatch')
parser.add_argument('--data_root', required=True, help='data root')
parser.add_argument('--checkpoint', required=True, help='checkpoint path')
parser.add_argument('--saved_path', default='work_dirs', help='saved path')
parser.add_argument('--npts', type=int, default=5000,
help='the number of sampled points for registration')
parser.add_argument('--vis', action='store_true',
help='whether to visualize the point clouds')
parser.add_argument('--no_cuda', action='store_true',
help='whether to use cuda')
args = parser.parse_args()
main(args)