-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.py
60 lines (48 loc) · 2.12 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
import scipy.sparse as sp
def get_sparse_rating_matrix(training_dict, num_user, num_item):
row = list()
col = list()
for u in training_dict:
for i in training_dict[u]:
row.append(u)
col.append(i)
rating_matrix_sparse = sp.csr_matrix(([1 for _ in range(len(row))], (row, col)), (num_user, num_item)).astype(np.float32)
return rating_matrix_sparse
def get_sparse_social_matrix(social_dict, num_user):
row = list()
col = list()
for u in social_dict:
for v in social_dict[u]:
row.append(u)
col.append(v)
social_matrix_sparse = sp.csr_matrix(([1 for _ in range(len(row))], (row, col)), (num_user, num_user)).astype(np.float32) + sp.eye(num_user)
return social_matrix_sparse
def get_user_batch(num_user, batch_size):
user_batch = list()
user_list = list(range(num_user))
np.random.shuffle(user_list)
i = 0
while i < len(user_list):
user_batch.append(np.asarray(user_list[i:i+batch_size]))
i += batch_size
return user_batch
def get_test_data(test_dict, negative_dict):
test_data = list()
for u in test_dict:
test_data.append([u, test_dict[u]] + negative_dict[u])
test_data = np.asarray(test_data)
return test_data
def feed_dict_training(model, user_batch, rating_matrix_sparse, social_matrix_sparse, keep_prob):
feed_dict = dict()
feed_dict[model.social_u] = np.array(social_matrix_sparse[list(user_batch)].todense())
feed_dict[model.rating_u] = np.array(rating_matrix_sparse[list(user_batch)].todense())
feed_dict[model.keep_prob] = keep_prob
return feed_dict
def feed_dict_test(model, test_data, rating_matrix_sparse, social_matrix_sparse, start, end):
feed_dict = dict()
feed_dict[model.social_u] = np.array(social_matrix_sparse[list(test_data[start:end, 0])].todense())
feed_dict[model.rating_u] = np.array(rating_matrix_sparse[list(test_data[start:end, 0])].todense())
feed_dict[model.i] = test_data[start:end, 1:]
feed_dict[model.keep_prob] = 1.0
return feed_dict