Skip to content

zhuyixuan1997/EEGScopeAndArbitration

Repository files navigation

EEGScopeAndArbitration

This repository is used to test the effect of the second stage model (arbitration) and window length (scope) on the EEG abnormal classification task.

Document Description

batch_test_hyperparameters.default.py: A template for hyperparameters that need to be tested in batches
train_and_eval_config.default.py: Template for hyperparameters tested individually
train_and_eval.py: Train and test the first-stage model
final_decision.py: Train and test the second-stage model
util.py: Helper functions
vit.py, hybrid_1.py, tcn_1.py: model file
tueg_labels.csv: labels of TUEG results_boxplot.py Plot results

Use steps

1, Download the TUAB dataset https://isip.piconepress.com/projects/tuh_eeg/downloads/tuh_eeg_abnormal/
2, Create batch_test_hyperparameters.py and train_and_eval_config.py based on batch_test_hyperparameters.default.py and train_and_eval_config.default.py
3, Run the train_and_eval.py to generate result.csv and training_detail.csv
4, Run the final_decision.py to generate decision_result.csv

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages