-
Notifications
You must be signed in to change notification settings - Fork 0
/
代码生成_2.py
61 lines (48 loc) · 2.27 KB
/
代码生成_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
@飞桨/智能问答
# 提问:
定义一个初始化函数,该函数接收一个参数,表示要初始化的模型层。如果是线性层类型,则将weight初始化为正态分布。如果是2D批归一化层类型,将weight初始化为正态分布,将bias初始化为常数0.。
# 参考回答
import paddle
def custom_initializer(layer):
if isinstance(layer, paddle.nn.Linear):
paddle.nn.initializer.Normal(mean=0.0, std=0.01)(layer.weight)
elif isinstance(layer, paddle.nn.BatchNorm2D):
paddle.nn.initializer.Normal(mean=1.0, std=0.02)(layer.weight)
paddle.nn.initializer.Constant(value=0.0)(layer.bias)
else:
print(f"No special initialization for layer type {type(layer)}.")
if __name__ == "__main__":
linear_layer = paddle.nn.Linear(in_features=10, out_features=20)
bn_layer = paddle.nn.BatchNorm2D(num_features=32)
custom_initializer(linear_layer)
custom_initializer(bn_layer)
print("Linear layer weight initialized:", linear_layer.weight.numpy())
print("BatchNorm2D layer weight initialized:", bn_layer.weight.numpy())
print("BatchNorm2D layer bias initialized:", bn_layer.bias.numpy())
"""
import paddle
import paddle.nn as nn
def custom_init(layer):
"""
自定义初始化函数
Args:
layer (nn.Layer): 要初始化的模型层
"""
if isinstance(layer, nn.Linear):
# 如果是线性层,将weight初始化为正态分布,均值为0,标准差为0.01
nn.initializer.Normal(mean=0.0, std=0.01)(layer.weight)
# 偏置初始化为0
nn.initializer.Constant(value=0.0)(layer.bias)
elif isinstance(layer, nn.BatchNorm2D):
# 如果是2D批归一化层,将weight初始化为正态分布,均值为1,标准差为0.02(通常BN层的weight初始化为1)
nn.initializer.Normal(mean=1.0, std=0.02)(layer.weight)
# 偏置初始化为0
nn.initializer.Constant(value=0.0)(layer.bias)
# 示例使用
linear_layer = nn.Linear(10, 20)
custom_init(linear_layer)
bn_layer = nn.BatchNorm2D(num_features=64)
custom_init(bn_layer)
# 注意:对于BatchNorm2D层,其weight的初始化通常设为1,而不是从0开始的正态分布,
# 因为BatchNorm层在训练初期需要稳定的输入方差来加速训练过程。