-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathconfig_nyu.py
148 lines (133 loc) · 3.62 KB
/
config_nyu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import os.path as osp
import sys
import time
import numpy as np
from easydict import EasyDict as edict
import argparse
C = edict()
config = C
cfg = C
C.seed = 3407
remoteip = os.popen('pwd').read()
C.root_dir = os.path.abspath(os.path.join(os.getcwd(), './'))
C.abs_dir = osp.realpath(".")
# Dataset config
"""Dataset Path"""
C.dataset_name = 'NYUDepthv2'
C.dataset_path = osp.join(C.root_dir, 'datasets', 'NYUDepthv2')
C.rgb_root_folder = osp.join(C.dataset_path, 'RGB')
C.rgb_format = '.jpg'
C.gt_root_folder = osp.join(C.dataset_path, 'Label')
C.gt_format = '.png'
C.gt_transform = True
# True when label 0 is invalid, you can also modify the function _transform_gt in dataloader.RGBXDataset
# True for most dataset valid, Faslse for MFNet(?)
C.x_root_folder = osp.join(C.dataset_path, 'Depth')
C.x_format = '.png'
C.x_is_single_channel = True # True for raw depth, thermal and aolp/dolp(not aolp/dolp tri) input
C.train_source = osp.join(C.dataset_path, "train2.txt")
C.eval_source = osp.join(C.dataset_path, "test2.txt")
C.is_test = False
C.num_train_imgs = 795
C.num_eval_imgs = 654
C.num_classes = 40
C.class_names = [
"wall",
"floor",
"cabinet",
"bed",
"chair",
"sofa",
"table",
"door",
"window",
"bookshelf",
"picture",
"counter",
"blinds",
"desk",
"shelves",
"curtain",
"dresser",
"pillow",
"mirror",
"floor mat",
"clothes",
"ceiling",
"books",
"refridgerator",
"television",
"paper",
"towel",
"shower curtain",
"box",
"whiteboard",
"person",
"night stand",
"toilet",
"sink",
"lamp",
"bathtub",
"bag",
"otherstructure",
"otherfurniture",
"otherprop",
]
"""Image Config"""
C.background = 255
C.image_height = 480
C.image_width = 640
C.norm_mean = np.array([0.485, 0.456, 0.406])
C.norm_std = np.array([0.229, 0.224, 0.225])
""" Settings for network, this would be different for each kind of model"""
C.backbone = 'sigma_tiny' # sigma_tiny / sigma_small / sigma_base
C.pretrained_model = None # do not need to change
C.decoder = 'MambaDecoder' # 'MLPDecoder'
C.decoder_embed_dim = 512
C.optimizer = 'AdamW'
"""Train Config"""
C.lr = 6e-5
C.lr_power = 0.9
C.momentum = 0.9
C.weight_decay = 0.01
C.batch_size = 8
C.nepochs = 500
C.niters_per_epoch = C.num_train_imgs // C.batch_size + 1
C.num_workers = 16
C.train_scale_array = [0.5, 0.75, 1, 1.25, 1.5, 1.75]
C.warm_up_epoch = 10
C.fix_bias = True
C.bn_eps = 1e-3
C.bn_momentum = 0.1
"""Eval Config"""
# C.eval_iter = 1
C.eval_stride_rate = 2 / 3
C.eval_scale_array = [0.75, 1, 1.25]
C.eval_flip = True
C.eval_crop_size = [480, 640] # [height weight]
"""Store Config"""
C.checkpoint_start_epoch = 50
C.checkpoint_step = 5
"""Path Config"""
def add_path(path):
if path not in sys.path:
sys.path.insert(0, path)
add_path(osp.join(C.root_dir))
C.log_dir = osp.abspath('log_final/log_nyudepth/' + 'log_' + C.dataset_name + '_' + C.backbone + '_' + 'cromb_conmb_cvssdecoder')
C.tb_dir = osp.abspath(osp.join(C.log_dir, "tb"))
C.log_dir_link = C.log_dir
C.checkpoint_dir = osp.abspath(osp.join(C.log_dir, "checkpoint"))
exp_time = time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime())
C.log_file = C.log_dir + '/log_' + exp_time + '.log'
C.link_log_file = C.log_file + '/log_last.log'
C.val_log_file = C.log_dir + '/val_' + exp_time + '.log'
C.link_val_log_file = C.log_dir + '/val_last.log'
if __name__ == '__main__':
print(config.nepochs)
parser = argparse.ArgumentParser()
parser.add_argument(
'-tb', '--tensorboard', default=False, action='store_true')
args = parser.parse_args()
if args.tensorboard:
open_tensorboard()