-
-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
static.zig
802 lines (713 loc) · 32.8 KB
/
static.zig
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
const std = @import("std");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const ArenaAllocator = std.heap.ArenaAllocator;
const ArrayList = std.ArrayList;
const Scanner = @import("./scanner.zig").Scanner;
const Token = @import("./scanner.zig").Token;
const AllocWhen = @import("./scanner.zig").AllocWhen;
const default_max_value_len = @import("./scanner.zig").default_max_value_len;
const isNumberFormattedLikeAnInteger = @import("./scanner.zig").isNumberFormattedLikeAnInteger;
const Value = @import("./dynamic.zig").Value;
const Array = @import("./dynamic.zig").Array;
/// Controls how to deal with various inconsistencies between the JSON document and the Zig struct type passed in.
/// For duplicate fields or unknown fields, set options in this struct.
/// For missing fields, give the Zig struct fields default values.
pub const ParseOptions = struct {
/// Behaviour when a duplicate field is encountered.
/// The default is to return `error.DuplicateField`.
duplicate_field_behavior: enum {
use_first,
@"error",
use_last,
} = .@"error",
/// If false, finding an unknown field returns `error.UnknownField`.
ignore_unknown_fields: bool = false,
/// Passed to `std.json.Scanner.nextAllocMax` or `std.json.Reader.nextAllocMax`.
/// The default for `parseFromSlice` or `parseFromTokenSource` with a `*std.json.Scanner` input
/// is the length of the input slice, which means `error.ValueTooLong` will never be returned.
/// The default for `parseFromTokenSource` with a `*std.json.Reader` is `std.json.default_max_value_len`.
/// Ignored for `parseFromValue` and `parseFromValueLeaky`.
max_value_len: ?usize = null,
/// This determines whether strings should always be copied,
/// or if a reference to the given buffer should be preferred if possible.
/// The default for `parseFromSlice` or `parseFromTokenSource` with a `*std.json.Scanner` input
/// is `.alloc_if_needed`.
/// The default with a `*std.json.Reader` input is `.alloc_always`.
/// Ignored for `parseFromValue` and `parseFromValueLeaky`.
allocate: ?AllocWhen = null,
};
pub fn Parsed(comptime T: type) type {
return struct {
arena: *ArenaAllocator,
value: T,
pub fn deinit(self: @This()) void {
const allocator = self.arena.child_allocator;
self.arena.deinit();
allocator.destroy(self.arena);
}
};
}
/// Parses the json document from `s` and returns the result packaged in a `std.json.Parsed`.
/// You must call `deinit()` of the returned object to clean up allocated resources.
/// If you are using a `std.heap.ArenaAllocator` or similar, consider calling `parseFromSliceLeaky` instead.
/// Note that `error.BufferUnderrun` is not actually possible to return from this function.
pub fn parseFromSlice(
comptime T: type,
allocator: Allocator,
s: []const u8,
options: ParseOptions,
) ParseError(Scanner)!Parsed(T) {
var scanner = Scanner.initCompleteInput(allocator, s);
defer scanner.deinit();
return parseFromTokenSource(T, allocator, &scanner, options);
}
/// Parses the json document from `s` and returns the result.
/// Allocations made during this operation are not carefully tracked and may not be possible to individually clean up.
/// It is recommended to use a `std.heap.ArenaAllocator` or similar.
pub fn parseFromSliceLeaky(
comptime T: type,
allocator: Allocator,
s: []const u8,
options: ParseOptions,
) ParseError(Scanner)!T {
var scanner = Scanner.initCompleteInput(allocator, s);
defer scanner.deinit();
return parseFromTokenSourceLeaky(T, allocator, &scanner, options);
}
/// `scanner_or_reader` must be either a `*std.json.Scanner` with complete input or a `*std.json.Reader`.
/// Note that `error.BufferUnderrun` is not actually possible to return from this function.
pub fn parseFromTokenSource(
comptime T: type,
allocator: Allocator,
scanner_or_reader: anytype,
options: ParseOptions,
) ParseError(@TypeOf(scanner_or_reader.*))!Parsed(T) {
var parsed = Parsed(T){
.arena = try allocator.create(ArenaAllocator),
.value = undefined,
};
errdefer allocator.destroy(parsed.arena);
parsed.arena.* = ArenaAllocator.init(allocator);
errdefer parsed.arena.deinit();
parsed.value = try parseFromTokenSourceLeaky(T, parsed.arena.allocator(), scanner_or_reader, options);
return parsed;
}
/// `scanner_or_reader` must be either a `*std.json.Scanner` with complete input or a `*std.json.Reader`.
/// Allocations made during this operation are not carefully tracked and may not be possible to individually clean up.
/// It is recommended to use a `std.heap.ArenaAllocator` or similar.
pub fn parseFromTokenSourceLeaky(
comptime T: type,
allocator: Allocator,
scanner_or_reader: anytype,
options: ParseOptions,
) ParseError(@TypeOf(scanner_or_reader.*))!T {
if (@TypeOf(scanner_or_reader.*) == Scanner) {
assert(scanner_or_reader.is_end_of_input);
}
var resolved_options = options;
if (resolved_options.max_value_len == null) {
if (@TypeOf(scanner_or_reader.*) == Scanner) {
resolved_options.max_value_len = scanner_or_reader.input.len;
} else {
resolved_options.max_value_len = default_max_value_len;
}
}
if (resolved_options.allocate == null) {
if (@TypeOf(scanner_or_reader.*) == Scanner) {
resolved_options.allocate = .alloc_if_needed;
} else {
resolved_options.allocate = .alloc_always;
}
}
const value = try innerParse(T, allocator, scanner_or_reader, resolved_options);
assert(.end_of_document == try scanner_or_reader.next());
return value;
}
/// Like `parseFromSlice`, but the input is an already-parsed `std.json.Value` object.
/// Only `options.ignore_unknown_fields` is used from `options`.
pub fn parseFromValue(
comptime T: type,
allocator: Allocator,
source: Value,
options: ParseOptions,
) ParseFromValueError!Parsed(T) {
var parsed = Parsed(T){
.arena = try allocator.create(ArenaAllocator),
.value = undefined,
};
errdefer allocator.destroy(parsed.arena);
parsed.arena.* = ArenaAllocator.init(allocator);
errdefer parsed.arena.deinit();
parsed.value = try parseFromValueLeaky(T, parsed.arena.allocator(), source, options);
return parsed;
}
pub fn parseFromValueLeaky(
comptime T: type,
allocator: Allocator,
source: Value,
options: ParseOptions,
) ParseFromValueError!T {
// I guess this function doesn't need to exist,
// but the flow of the sourcecode is easy to follow and grouped nicely with
// this pub redirect function near the top and the implementation near the bottom.
return innerParseFromValue(T, allocator, source, options);
}
/// The error set that will be returned when parsing from `*Source`.
/// Note that this may contain `error.BufferUnderrun`, but that error will never actually be returned.
pub fn ParseError(comptime Source: type) type {
// A few of these will either always be present or present enough of the time that
// omitting them is more confusing than always including them.
return ParseFromValueError || Source.NextError || Source.PeekError || Source.AllocError;
}
pub const ParseFromValueError = std.fmt.ParseIntError || std.fmt.ParseFloatError || Allocator.Error || error{
UnexpectedToken,
InvalidNumber,
Overflow,
InvalidEnumTag,
DuplicateField,
UnknownField,
MissingField,
LengthMismatch,
};
/// This is an internal function called recursively
/// during the implementation of `parseFromTokenSourceLeaky` and similar.
/// It is exposed primarily to enable custom `jsonParse()` methods to call back into the `parseFrom*` system,
/// such as if you're implementing a custom container of type `T`;
/// you can call `innerParse(T, ...)` for each of the container's items.
/// Note that `null` fields are not allowed on the `options` when calling this function.
/// (The `options` you get in your `jsonParse` method has no `null` fields.)
pub fn innerParse(
comptime T: type,
allocator: Allocator,
source: anytype,
options: ParseOptions,
) ParseError(@TypeOf(source.*))!T {
switch (@typeInfo(T)) {
.Bool => {
return switch (try source.next()) {
.true => true,
.false => false,
else => error.UnexpectedToken,
};
},
.Float, .ComptimeFloat => {
const token = try source.nextAllocMax(allocator, .alloc_if_needed, options.max_value_len.?);
defer freeAllocated(allocator, token);
const slice = switch (token) {
inline .number, .allocated_number, .string, .allocated_string => |slice| slice,
else => return error.UnexpectedToken,
};
return try std.fmt.parseFloat(T, slice);
},
.Int, .ComptimeInt => {
const token = try source.nextAllocMax(allocator, .alloc_if_needed, options.max_value_len.?);
defer freeAllocated(allocator, token);
const slice = switch (token) {
inline .number, .allocated_number, .string, .allocated_string => |slice| slice,
else => return error.UnexpectedToken,
};
return sliceToInt(T, slice);
},
.Optional => |optionalInfo| {
switch (try source.peekNextTokenType()) {
.null => {
_ = try source.next();
return null;
},
else => {
return try innerParse(optionalInfo.child, allocator, source, options);
},
}
},
.Enum => {
if (std.meta.hasFn(T, "jsonParse")) {
return T.jsonParse(allocator, source, options);
}
const token = try source.nextAllocMax(allocator, .alloc_if_needed, options.max_value_len.?);
defer freeAllocated(allocator, token);
const slice = switch (token) {
inline .number, .allocated_number, .string, .allocated_string => |slice| slice,
else => return error.UnexpectedToken,
};
return sliceToEnum(T, slice);
},
.Union => |unionInfo| {
if (std.meta.hasFn(T, "jsonParse")) {
return T.jsonParse(allocator, source, options);
}
if (unionInfo.tag_type == null) @compileError("Unable to parse into untagged union '" ++ @typeName(T) ++ "'");
if (.object_begin != try source.next()) return error.UnexpectedToken;
var result: ?T = null;
var name_token: ?Token = try source.nextAllocMax(allocator, .alloc_if_needed, options.max_value_len.?);
const field_name = switch (name_token.?) {
inline .string, .allocated_string => |slice| slice,
else => {
return error.UnexpectedToken;
},
};
inline for (unionInfo.fields) |u_field| {
if (std.mem.eql(u8, u_field.name, field_name)) {
// Free the name token now in case we're using an allocator that optimizes freeing the last allocated object.
// (Recursing into innerParse() might trigger more allocations.)
freeAllocated(allocator, name_token.?);
name_token = null;
if (u_field.type == void) {
// void isn't really a json type, but we can support void payload union tags with {} as a value.
if (.object_begin != try source.next()) return error.UnexpectedToken;
if (.object_end != try source.next()) return error.UnexpectedToken;
result = @unionInit(T, u_field.name, {});
} else {
// Recurse.
result = @unionInit(T, u_field.name, try innerParse(u_field.type, allocator, source, options));
}
break;
}
} else {
// Didn't match anything.
return error.UnknownField;
}
if (.object_end != try source.next()) return error.UnexpectedToken;
return result.?;
},
.Struct => |structInfo| {
if (structInfo.is_tuple) {
if (.array_begin != try source.next()) return error.UnexpectedToken;
var r: T = undefined;
inline for (0..structInfo.fields.len) |i| {
r[i] = try innerParse(structInfo.fields[i].type, allocator, source, options);
}
if (.array_end != try source.next()) return error.UnexpectedToken;
return r;
}
if (std.meta.hasFn(T, "jsonParse")) {
return T.jsonParse(allocator, source, options);
}
if (.object_begin != try source.next()) return error.UnexpectedToken;
var r: T = undefined;
var fields_seen = [_]bool{false} ** structInfo.fields.len;
while (true) {
var name_token: ?Token = try source.nextAllocMax(allocator, .alloc_if_needed, options.max_value_len.?);
const field_name = switch (name_token.?) {
inline .string, .allocated_string => |slice| slice,
.object_end => { // No more fields.
break;
},
else => {
return error.UnexpectedToken;
},
};
inline for (structInfo.fields, 0..) |field, i| {
if (field.is_comptime) @compileError("comptime fields are not supported: " ++ @typeName(T) ++ "." ++ field.name);
if (std.mem.eql(u8, field.name, field_name)) {
// Free the name token now in case we're using an allocator that optimizes freeing the last allocated object.
// (Recursing into innerParse() might trigger more allocations.)
freeAllocated(allocator, name_token.?);
name_token = null;
if (fields_seen[i]) {
switch (options.duplicate_field_behavior) {
.use_first => {
// Parse and ignore the redundant value.
// We don't want to skip the value, because we want type checking.
_ = try innerParse(field.type, allocator, source, options);
break;
},
.@"error" => return error.DuplicateField,
.use_last => {},
}
}
@field(r, field.name) = try innerParse(field.type, allocator, source, options);
fields_seen[i] = true;
break;
}
} else {
// Didn't match anything.
freeAllocated(allocator, name_token.?);
if (options.ignore_unknown_fields) {
try source.skipValue();
} else {
return error.UnknownField;
}
}
}
try fillDefaultStructValues(T, &r, &fields_seen);
return r;
},
.Array => |arrayInfo| {
switch (try source.peekNextTokenType()) {
.array_begin => {
// Typical array.
return internalParseArray(T, arrayInfo.child, arrayInfo.len, allocator, source, options);
},
.string => {
if (arrayInfo.child != u8) return error.UnexpectedToken;
// Fixed-length string.
var r: T = undefined;
var i: usize = 0;
while (true) {
switch (try source.next()) {
.string => |slice| {
if (i + slice.len != r.len) return error.LengthMismatch;
@memcpy(r[i..][0..slice.len], slice);
break;
},
.partial_string => |slice| {
if (i + slice.len > r.len) return error.LengthMismatch;
@memcpy(r[i..][0..slice.len], slice);
i += slice.len;
},
.partial_string_escaped_1 => |arr| {
if (i + arr.len > r.len) return error.LengthMismatch;
@memcpy(r[i..][0..arr.len], arr[0..]);
i += arr.len;
},
.partial_string_escaped_2 => |arr| {
if (i + arr.len > r.len) return error.LengthMismatch;
@memcpy(r[i..][0..arr.len], arr[0..]);
i += arr.len;
},
.partial_string_escaped_3 => |arr| {
if (i + arr.len > r.len) return error.LengthMismatch;
@memcpy(r[i..][0..arr.len], arr[0..]);
i += arr.len;
},
.partial_string_escaped_4 => |arr| {
if (i + arr.len > r.len) return error.LengthMismatch;
@memcpy(r[i..][0..arr.len], arr[0..]);
i += arr.len;
},
else => unreachable,
}
}
return r;
},
else => return error.UnexpectedToken,
}
},
.Vector => |vecInfo| {
switch (try source.peekNextTokenType()) {
.array_begin => {
return internalParseArray(T, vecInfo.child, vecInfo.len, allocator, source, options);
},
else => return error.UnexpectedToken,
}
},
.Pointer => |ptrInfo| {
switch (ptrInfo.size) {
.One => {
const r: *ptrInfo.child = try allocator.create(ptrInfo.child);
r.* = try innerParse(ptrInfo.child, allocator, source, options);
return r;
},
.Slice => {
switch (try source.peekNextTokenType()) {
.array_begin => {
_ = try source.next();
// Typical array.
var arraylist = ArrayList(ptrInfo.child).init(allocator);
while (true) {
switch (try source.peekNextTokenType()) {
.array_end => {
_ = try source.next();
break;
},
else => {},
}
try arraylist.ensureUnusedCapacity(1);
arraylist.appendAssumeCapacity(try innerParse(ptrInfo.child, allocator, source, options));
}
if (ptrInfo.sentinel) |some| {
const sentinel_value = @as(*align(1) const ptrInfo.child, @ptrCast(some)).*;
return try arraylist.toOwnedSliceSentinel(sentinel_value);
}
return try arraylist.toOwnedSlice();
},
.string => {
if (ptrInfo.child != u8) return error.UnexpectedToken;
// Dynamic length string.
if (ptrInfo.sentinel) |sentinel_ptr| {
// Use our own array list so we can append the sentinel.
var value_list = ArrayList(u8).init(allocator);
_ = try source.allocNextIntoArrayList(&value_list, .alloc_always);
return try value_list.toOwnedSliceSentinel(@as(*const u8, @ptrCast(sentinel_ptr)).*);
}
if (ptrInfo.is_const) {
switch (try source.nextAllocMax(allocator, options.allocate.?, options.max_value_len.?)) {
inline .string, .allocated_string => |slice| return slice,
else => unreachable,
}
} else {
// Have to allocate to get a mutable copy.
switch (try source.nextAllocMax(allocator, .alloc_always, options.max_value_len.?)) {
.allocated_string => |slice| return slice,
else => unreachable,
}
}
},
else => return error.UnexpectedToken,
}
},
else => @compileError("Unable to parse into type '" ++ @typeName(T) ++ "'"),
}
},
else => @compileError("Unable to parse into type '" ++ @typeName(T) ++ "'"),
}
unreachable;
}
fn internalParseArray(
comptime T: type,
comptime Child: type,
comptime len: comptime_int,
allocator: Allocator,
source: anytype,
options: ParseOptions,
) !T {
assert(.array_begin == try source.next());
var r: T = undefined;
var i: usize = 0;
while (i < len) : (i += 1) {
r[i] = try innerParse(Child, allocator, source, options);
}
if (.array_end != try source.next()) return error.UnexpectedToken;
return r;
}
/// This is an internal function called recursively
/// during the implementation of `parseFromValueLeaky`.
/// It is exposed primarily to enable custom `jsonParseFromValue()` methods to call back into the `parseFromValue*` system,
/// such as if you're implementing a custom container of type `T`;
/// you can call `innerParseFromValue(T, ...)` for each of the container's items.
pub fn innerParseFromValue(
comptime T: type,
allocator: Allocator,
source: Value,
options: ParseOptions,
) ParseFromValueError!T {
switch (@typeInfo(T)) {
.Bool => {
switch (source) {
.bool => |b| return b,
else => return error.UnexpectedToken,
}
},
.Float, .ComptimeFloat => {
switch (source) {
.float => |f| return @as(T, @floatCast(f)),
.integer => |i| return @as(T, @floatFromInt(i)),
.number_string, .string => |s| return std.fmt.parseFloat(T, s),
else => return error.UnexpectedToken,
}
},
.Int, .ComptimeInt => {
switch (source) {
.float => |f| {
if (@round(f) != f) return error.InvalidNumber;
if (f > std.math.maxInt(T)) return error.Overflow;
if (f < std.math.minInt(T)) return error.Overflow;
return @as(T, @intFromFloat(f));
},
.integer => |i| {
if (i > std.math.maxInt(T)) return error.Overflow;
if (i < std.math.minInt(T)) return error.Overflow;
return @as(T, @intCast(i));
},
.number_string, .string => |s| {
return sliceToInt(T, s);
},
else => return error.UnexpectedToken,
}
},
.Optional => |optionalInfo| {
switch (source) {
.null => return null,
else => return try innerParseFromValue(optionalInfo.child, allocator, source, options),
}
},
.Enum => {
if (std.meta.hasFn(T, "jsonParseFromValue")) {
return T.jsonParseFromValue(allocator, source, options);
}
switch (source) {
.float => return error.InvalidEnumTag,
.integer => |i| return std.meta.intToEnum(T, i),
.number_string, .string => |s| return sliceToEnum(T, s),
else => return error.UnexpectedToken,
}
},
.Union => |unionInfo| {
if (std.meta.hasFn(T, "jsonParseFromValue")) {
return T.jsonParseFromValue(allocator, source, options);
}
if (unionInfo.tag_type == null) @compileError("Unable to parse into untagged union '" ++ @typeName(T) ++ "'");
if (source != .object) return error.UnexpectedToken;
if (source.object.count() != 1) return error.UnexpectedToken;
var it = source.object.iterator();
const kv = it.next().?;
const field_name = kv.key_ptr.*;
inline for (unionInfo.fields) |u_field| {
if (std.mem.eql(u8, u_field.name, field_name)) {
if (u_field.type == void) {
// void isn't really a json type, but we can support void payload union tags with {} as a value.
if (kv.value_ptr.* != .object) return error.UnexpectedToken;
if (kv.value_ptr.*.object.count() != 0) return error.UnexpectedToken;
return @unionInit(T, u_field.name, {});
}
// Recurse.
return @unionInit(T, u_field.name, try innerParseFromValue(u_field.type, allocator, kv.value_ptr.*, options));
}
}
// Didn't match anything.
return error.UnknownField;
},
.Struct => |structInfo| {
if (structInfo.is_tuple) {
if (source != .array) return error.UnexpectedToken;
if (source.array.items.len != structInfo.fields.len) return error.UnexpectedToken;
var r: T = undefined;
inline for (0..structInfo.fields.len, source.array.items) |i, item| {
r[i] = try innerParseFromValue(structInfo.fields[i].type, allocator, item, options);
}
return r;
}
if (std.meta.hasFn(T, "jsonParseFromValue")) {
return T.jsonParseFromValue(allocator, source, options);
}
if (source != .object) return error.UnexpectedToken;
var r: T = undefined;
var fields_seen = [_]bool{false} ** structInfo.fields.len;
var it = source.object.iterator();
while (it.next()) |kv| {
const field_name = kv.key_ptr.*;
inline for (structInfo.fields, 0..) |field, i| {
if (field.is_comptime) @compileError("comptime fields are not supported: " ++ @typeName(T) ++ "." ++ field.name);
if (std.mem.eql(u8, field.name, field_name)) {
assert(!fields_seen[i]); // Can't have duplicate keys in a Value.object.
@field(r, field.name) = try innerParseFromValue(field.type, allocator, kv.value_ptr.*, options);
fields_seen[i] = true;
break;
}
} else {
// Didn't match anything.
if (!options.ignore_unknown_fields) return error.UnknownField;
}
}
try fillDefaultStructValues(T, &r, &fields_seen);
return r;
},
.Array => |arrayInfo| {
switch (source) {
.array => |array| {
// Typical array.
return innerParseArrayFromArrayValue(T, arrayInfo.child, arrayInfo.len, allocator, array, options);
},
.string => |s| {
if (arrayInfo.child != u8) return error.UnexpectedToken;
// Fixed-length string.
if (s.len != arrayInfo.len) return error.LengthMismatch;
var r: T = undefined;
@memcpy(r[0..], s);
return r;
},
else => return error.UnexpectedToken,
}
},
.Vector => |vecInfo| {
switch (source) {
.array => |array| {
return innerParseArrayFromArrayValue(T, vecInfo.child, vecInfo.len, allocator, array, options);
},
else => return error.UnexpectedToken,
}
},
.Pointer => |ptrInfo| {
switch (ptrInfo.size) {
.One => {
const r: *ptrInfo.child = try allocator.create(ptrInfo.child);
r.* = try innerParseFromValue(ptrInfo.child, allocator, source, options);
return r;
},
.Slice => {
switch (source) {
.array => |array| {
const r = if (ptrInfo.sentinel) |sentinel_ptr|
try allocator.allocSentinel(ptrInfo.child, array.items.len, @as(*align(1) const ptrInfo.child, @ptrCast(sentinel_ptr)).*)
else
try allocator.alloc(ptrInfo.child, array.items.len);
for (array.items, r) |item, *dest| {
dest.* = try innerParseFromValue(ptrInfo.child, allocator, item, options);
}
return r;
},
.string => |s| {
if (ptrInfo.child != u8) return error.UnexpectedToken;
// Dynamic length string.
const r = if (ptrInfo.sentinel) |sentinel_ptr|
try allocator.allocSentinel(ptrInfo.child, s.len, @as(*align(1) const ptrInfo.child, @ptrCast(sentinel_ptr)).*)
else
try allocator.alloc(ptrInfo.child, s.len);
@memcpy(r[0..], s);
return r;
},
else => return error.UnexpectedToken,
}
},
else => @compileError("Unable to parse into type '" ++ @typeName(T) ++ "'"),
}
},
else => @compileError("Unable to parse into type '" ++ @typeName(T) ++ "'"),
}
}
fn innerParseArrayFromArrayValue(
comptime T: type,
comptime Child: type,
comptime len: comptime_int,
allocator: Allocator,
array: Array,
options: ParseOptions,
) !T {
if (array.items.len != len) return error.LengthMismatch;
var r: T = undefined;
for (array.items, 0..) |item, i| {
r[i] = try innerParseFromValue(Child, allocator, item, options);
}
return r;
}
fn sliceToInt(comptime T: type, slice: []const u8) !T {
if (isNumberFormattedLikeAnInteger(slice))
return std.fmt.parseInt(T, slice, 10);
// Try to coerce a float to an integer.
const float = try std.fmt.parseFloat(f128, slice);
if (@round(float) != float) return error.InvalidNumber;
if (float > std.math.maxInt(T) or float < std.math.minInt(T)) return error.Overflow;
return @as(T, @intCast(@as(i128, @intFromFloat(float))));
}
fn sliceToEnum(comptime T: type, slice: []const u8) !T {
// Check for a named value.
if (std.meta.stringToEnum(T, slice)) |value| return value;
// Check for a numeric value.
if (!isNumberFormattedLikeAnInteger(slice)) return error.InvalidEnumTag;
const n = std.fmt.parseInt(@typeInfo(T).Enum.tag_type, slice, 10) catch return error.InvalidEnumTag;
return std.meta.intToEnum(T, n);
}
fn fillDefaultStructValues(comptime T: type, r: *T, fields_seen: *[@typeInfo(T).Struct.fields.len]bool) !void {
inline for (@typeInfo(T).Struct.fields, 0..) |field, i| {
if (!fields_seen[i]) {
if (field.default_value) |default_ptr| {
const default = @as(*align(1) const field.type, @ptrCast(default_ptr)).*;
@field(r, field.name) = default;
} else {
return error.MissingField;
}
}
}
}
fn freeAllocated(allocator: Allocator, token: Token) void {
switch (token) {
.allocated_number, .allocated_string => |slice| {
allocator.free(slice);
},
else => {},
}
}
test {
_ = @import("./static_test.zig");
}