-
Notifications
You must be signed in to change notification settings - Fork 10
/
mask_rcnn_lit_s_fpn_1x_coco.py
39 lines (35 loc) · 1.14 KB
/
mask_rcnn_lit_s_fpn_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
_base_ = [
'../_base_/models/mask_rcnn_fpn_lit_s.py',
'../_base_/datasets/coco_instance.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
pretrained='pretrained/lit_s.pth',
backbone=dict(
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
ape=False,
drop_path_rate=0.2,
patch_norm=True,
use_checkpoint=True
),
neck=dict(in_channels=[96, 192, 384, 768]))
optimizer = dict(type='AdamW', lr=0.0002, weight_decay=0.0001,
paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.),
'relative_position_bias_table': dict(decay_mult=0.),
'norm': dict(decay_mult=0.)})
)
lr_config = dict(step=[8, 11])
runner = dict(type='EpochBasedRunnerAmp', max_epochs=12)
# do not use mmdet version fp16
fp16 = None
optimizer_config = dict(
type="DistOptimizerHook",
update_interval=1,
grad_clip=None,
coalesce=True,
bucket_size_mb=-1,
use_fp16=True,
)