You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, for Synapse datasets (this is somehow different from ACDC and prostate), please import the dataset:
from dataloaders.dataset import BaseDataSets_Synapse
and then replace the orginal dataset.
and the bugs indicates the evaluation metrics error. This is not a significant problems, and I guess you could just potentially not use the HD95 metrics, that would be fine. because ths loss is based on dice, not HD95.
hi, have you tried to train a model with 10,000 iterations? or 30,000 iterations?
Thanks.
It did works!But I got a new trouble when i run test_2D_fully.py
I ran as :
python test_2D_fully.py --root_path ../data/Synapse --exp Synapse/VIM --model mambaunet --num_classes 9 --labeled_num 8
And then got a bug:
test_2D_fully.py:12: DeprecationWarning: Please use zoom from the scipy.ndimage namespace, the scipy.ndimage.interpolation namespace is deprecated.
from scipy.ndimage.interpolation import zoom
=> merge config from ../code/configs/swin_tiny_patch4_window7_224_lite.yaml
None
../model/Synapse/VIM_8_labeled/mambaunet/mambaunet_best_model.pth
Traceback (most recent call last):
File "test_2D_fully.py", line 125, in
metric = Inference(FLAGS)
File "test_2D_fully.py", line 105, in Inference
net.load_state_dict(torch.load(save_mode_path))
AttributeError: 'NoneType' object has no attribute 'load_state_dict'
Notice net is a None type.I trace back in networks.net_factory ,and found:
def net_factory(net_type="unet", in_chns=1, class_num=4):
if net_type == "unet":
net = UNet(in_chns=in_chns, class_num=class_num).cuda()
elif net_type == "enet":
net = ENet(in_channels=in_chns, num_classes=class_num).cuda()
elif net_type == "unet_ds":
net = UNet_DS(in_chns=in_chns, class_num=class_num).cuda()
elif net_type == "unet_cct":
net = UNet_CCT(in_chns=in_chns, class_num=class_num).cuda()
elif net_type == "unet_urpc":
net = UNet_URPC(in_chns=in_chns, class_num=class_num).cuda()
elif net_type == "efficient_unet":
net = Effi_UNet('efficientnet-b3', encoder_weights='imagenet',
in_channels=in_chns, classes=class_num).cuda()
elif net_type == "ViT_Seg" :#or "mambaunet"
net = ViT_seg(config, img_size=args.patch_size,
num_classes=args.num_classes).cuda()
elif net_type == "pnet":
net = PNet2D(in_chns, class_num, 64, [1, 2, 4, 8, 16]).cuda()
elif net_type == "nnUNet":
net = initialize_network(num_classes=class_num).cuda()
else:
net = None
return net
It mean that model" mambaunet" actually has no net
I dont konw how to solve it .
Thank a lot for your reply!And could you please help me for the new problem?Thanks again!
The text was updated successfully, but these errors were encountered:
It did works!But I got a new trouble when i run test_2D_fully.py
I ran as :
python test_2D_fully.py --root_path ../data/Synapse --exp Synapse/VIM --model mambaunet --num_classes 9 --labeled_num 8
And then got a bug:
test_2D_fully.py:12: DeprecationWarning: Please use zoom from the scipy.ndimage namespace, the scipy.ndimage.interpolation namespace is deprecated.
from scipy.ndimage.interpolation import zoom
=> merge config from ../code/configs/swin_tiny_patch4_window7_224_lite.yaml
None
../model/Synapse/VIM_8_labeled/mambaunet/mambaunet_best_model.pth
Traceback (most recent call last):
File "test_2D_fully.py", line 125, in
metric = Inference(FLAGS)
File "test_2D_fully.py", line 105, in Inference
net.load_state_dict(torch.load(save_mode_path))
AttributeError: 'NoneType' object has no attribute 'load_state_dict'
Notice net is a None type.I trace back in networks.net_factory ,and found:
def net_factory(net_type="unet", in_chns=1, class_num=4):
if net_type == "unet":
net = UNet(in_chns=in_chns, class_num=class_num).cuda()
elif net_type == "enet":
net = ENet(in_channels=in_chns, num_classes=class_num).cuda()
elif net_type == "unet_ds":
net = UNet_DS(in_chns=in_chns, class_num=class_num).cuda()
elif net_type == "unet_cct":
net = UNet_CCT(in_chns=in_chns, class_num=class_num).cuda()
elif net_type == "unet_urpc":
net = UNet_URPC(in_chns=in_chns, class_num=class_num).cuda()
elif net_type == "efficient_unet":
net = Effi_UNet('efficientnet-b3', encoder_weights='imagenet',
in_channels=in_chns, classes=class_num).cuda()
elif net_type == "ViT_Seg" :#or "mambaunet"
net = ViT_seg(config, img_size=args.patch_size,
num_classes=args.num_classes).cuda()
elif net_type == "pnet":
net = PNet2D(in_chns, class_num, 64, [1, 2, 4, 8, 16]).cuda()
elif net_type == "nnUNet":
net = initialize_network(num_classes=class_num).cuda()
else:
net = None
return net
It mean that model" mambaunet" actually has no net
I dont konw how to solve it .
Thank a lot for your reply!And could you please help me for the new problem?Thanks again!
The text was updated successfully, but these errors were encountered: