forked from aigc-apps/EasyAnimate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict_v2v.py
223 lines (189 loc) · 9.05 KB
/
predict_v2v.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import numpy as np
import torch
import cv2
from diffusers import (AutoencoderKL, DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
PNDMScheduler)
from omegaconf import OmegaConf
from PIL import Image
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from easyanimate.models.autoencoder_magvit import AutoencoderKLMagvit
from easyanimate.models.transformer3d import Transformer3DModel
from easyanimate.models.transformer3d import Transformer3DModel, HunyuanTransformer3DModel
from easyanimate.pipeline.pipeline_easyanimate_multi_text_encoder_inpaint import EasyAnimatePipeline_Multi_Text_Encoder_Inpaint
from easyanimate.pipeline.pipeline_easyanimate_inpaint import \
EasyAnimateInpaintPipeline
from easyanimate.utils.lora_utils import merge_lora, unmerge_lora
from easyanimate.utils.utils import save_videos_grid, get_image_to_video_latent, get_video_to_video_latent
# Low gpu memory mode, this is used when the GPU memory is under 16GB
low_gpu_memory_mode = False
# Config and model path
config_path = "config/easyanimate_video_slicevae_multi_text_encoder_v4.yaml"
model_name = "models/Diffusion_Transformer/EasyAnimateV4-XL-2-InP"
# Choose the sampler in "Euler" "Euler A" "DPM++" "PNDM" and "DDIM"
sampler_name = "Euler"
# Load pretrained model if need
transformer_path = None
# V2 and V3 does not need a motion module
motion_module_path = None
vae_path = None
lora_path = None
# Other params
sample_size = [384, 672]
# In EasyAnimateV1, the video_length of video is 40 ~ 80.
# In EasyAnimateV2 and V3, the video_length of video is 1 ~ 144. If u want to generate a image, please set the video_length = 1.
video_length = 144
fps = 24
# Use torch.float16 if GPU does not support torch.bfloat16
# ome graphics cards, such as v100, 2080ti, do not support torch.bfloat16
weight_dtype = torch.bfloat16
# If you want to generate from text, please set the validation_image_start = None and validation_image_end = None
validation_video = "asset/1.mp4"
denoise_strength = 0.70
# prompts
# We support English and Chinese in V4
prompt = "一位年轻女子,有着美丽清澈的眼睛和金发,站在森林里,穿着白色的衣服,戴着皇冠。她似乎陷入了沉思,相机聚焦在她的脸上。质量高、杰作、最佳品质、高分辨率、超精细、梦幻般。"
negative_prompt = "低质量,不清晰,突变,变形,失真。"
# prompt = "A young woman with beautiful and clear eyes and blonde hair standing and white dress in a forest wearing a crown. She seems to be lost in thought, and the camera focuses on her face. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic."
# negative_prompt = "The video is not of a high quality, it has a low resolution, and the audio quality is not clear. Strange motion trajectory, a poor composition and deformed video, low resolution, duplicate and ugly, strange body structure, long and strange neck, bad teeth, bad eyes, bad limbs, bad hands, rotating camera, blurry camera, shaking camera. Deformation, low-resolution, blurry, ugly, distortion. "
guidance_scale = 7.0
seed = 43
num_inference_steps = 25
lora_weight = 0.60
save_path = "samples/easyanimate-videos_v2v"
config = OmegaConf.load(config_path)
# Get Transformer
if config.get('enable_multi_text_encoder', False):
Choosen_Transformer3DModel = HunyuanTransformer3DModel
else:
Choosen_Transformer3DModel = Transformer3DModel
transformer_additional_kwargs = OmegaConf.to_container(config['transformer_additional_kwargs'])
if weight_dtype == torch.float16:
transformer_additional_kwargs["upcast_attention"] = True
transformer = Choosen_Transformer3DModel.from_pretrained_2d(
model_name,
subfolder="transformer",
transformer_additional_kwargs=transformer_additional_kwargs
).to(weight_dtype)
if transformer_path is not None:
print(f"From checkpoint: {transformer_path}")
if transformer_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(transformer_path)
else:
state_dict = torch.load(transformer_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = transformer.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
if motion_module_path is not None:
print(f"From Motion Module: {motion_module_path}")
if motion_module_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(motion_module_path)
else:
state_dict = torch.load(motion_module_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = transformer.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}, {u}")
# Get Vae
if OmegaConf.to_container(config['vae_kwargs'])['enable_magvit']:
Choosen_AutoencoderKL = AutoencoderKLMagvit
else:
Choosen_AutoencoderKL = AutoencoderKL
vae = Choosen_AutoencoderKL.from_pretrained(
model_name,
subfolder="vae",
).to(weight_dtype)
if OmegaConf.to_container(config['vae_kwargs'])['enable_magvit'] and weight_dtype == torch.float16:
vae.upcast_vae = True
if vae_path is not None:
print(f"From checkpoint: {vae_path}")
if vae_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(vae_path)
else:
state_dict = torch.load(vae_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = vae.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
model_name, subfolder="image_encoder"
).to("cuda", weight_dtype)
clip_image_processor = CLIPImageProcessor.from_pretrained(
model_name, subfolder="image_encoder"
)
# Get Scheduler
Choosen_Scheduler = scheduler_dict = {
"Euler": EulerDiscreteScheduler,
"Euler A": EulerAncestralDiscreteScheduler,
"DPM++": DPMSolverMultistepScheduler,
"PNDM": PNDMScheduler,
"DDIM": DDIMScheduler,
}[sampler_name]
if config.get('enable_multi_text_encoder', False):
scheduler = Choosen_Scheduler.from_pretrained(
model_name,
subfolder="scheduler"
)
pipeline = EasyAnimatePipeline_Multi_Text_Encoder_Inpaint.from_pretrained(
model_name,
vae=vae,
transformer=transformer,
scheduler=scheduler,
torch_dtype=weight_dtype,
clip_image_encoder=clip_image_encoder,
clip_image_processor=clip_image_processor,
)
else:
scheduler = Choosen_Scheduler(**OmegaConf.to_container(config['noise_scheduler_kwargs']))
pipeline = EasyAnimateInpaintPipeline.from_pretrained(
model_name,
vae=vae,
transformer=transformer,
scheduler=scheduler,
torch_dtype=weight_dtype,
clip_image_encoder=clip_image_encoder,
clip_image_processor=clip_image_processor,
)
if low_gpu_memory_mode:
pipeline.enable_sequential_cpu_offload()
else:
pipeline.enable_model_cpu_offload()
generator = torch.Generator(device="cuda").manual_seed(seed)
if lora_path is not None:
pipeline = merge_lora(pipeline, lora_path, lora_weight, "cuda")
video_length = int(video_length // vae.mini_batch_encoder * vae.mini_batch_encoder) if video_length != 1 else 1
input_video, input_video_mask, clip_image = get_video_to_video_latent(validation_video, video_length=video_length, sample_size=sample_size)
with torch.no_grad():
sample = pipeline(
prompt,
video_length = video_length,
negative_prompt = negative_prompt,
height = sample_size[0],
width = sample_size[1],
generator = generator,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
video = input_video,
mask_video = input_video_mask,
clip_image = clip_image,
strength = denoise_strength
).videos
if lora_path is not None:
pipeline = unmerge_lora(pipeline, lora_path, lora_weight, "cuda")
if not os.path.exists(save_path):
os.makedirs(save_path, exist_ok=True)
index = len([path for path in os.listdir(save_path)]) + 1
prefix = str(index).zfill(8)
if video_length == 1:
save_sample_path = os.path.join(save_path, prefix + f".png")
image = sample[0, :, 0]
image = image.transpose(0, 1).transpose(1, 2)
image = (image * 255).numpy().astype(np.uint8)
image = Image.fromarray(image)
image.save(save_sample_path)
else:
video_path = os.path.join(save_path, prefix + ".mp4")
save_videos_grid(sample, video_path, fps=fps)