-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
74 lines (65 loc) · 2.99 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import os.path as path
import argparse
from adn.utils import \
get_config, update_config, save_config, \
get_last_checkpoint, add_post, Logger
from adn.datasets import get_dataset
from adn.models import ADNTrain
from torch.utils.data import DataLoader
# from skimage.measure import compare_ssim as ssim
# from skimage.measure import compare_psnr as psnr
if __name__ == "__main__":
# Parse command line options
parser = argparse.ArgumentParser(description="Train an artifact disentanglement network")
parser.add_argument("run_name", help="name of the run")
parser.add_argument("--default_config", default="config/adn.yaml", help="default configs")
parser.add_argument("--run_config", default="runs/adn.yaml", help="run configs")
args = parser.parse_args()
# Get ADN options
opts = get_config(args.default_config)
run_opts = get_config(args.run_config)
if args.run_name in run_opts and "train" in run_opts[args.run_name]:
run_opts = run_opts[args.run_name]["train"]
update_config(opts, run_opts)
run_dir = path.join(opts["checkpoints_dir"], args.run_name)
if not path.isdir(run_dir): os.makedirs(run_dir)
save_config(opts, path.join(run_dir, "train_options.yaml"))
# Get dataset
def get_image(data):
dataset_type = dataset_opts['dataset_type']
if dataset_type == "deep_lesion":
if dataset_opts[dataset_type]['load_mask']: return data['data_name'],data['A'], data['C'], data['D']
else: return data['data_name'],data['A'], data['C'], data['D']
elif dataset_type == "spineweb":
return data['a'], data['b']
elif dataset_type == "nature_image":
return data["artifact"], data["no_artifact"]
else:
raise ValueError("Invalid dataset type!")
dataset_opts = opts['dataset']
train_dataset = get_dataset(**dataset_opts)
train_loader = DataLoader(train_dataset,
batch_size=opts["batch_size"], num_workers=opts['num_workers'], shuffle=True)
train_loader = add_post(train_loader, get_image)
# Get checkpoint
if opts['last_epoch'] == 'last':
checkpoint, start_epoch = get_last_checkpoint(run_dir)
else:
start_epoch = opts['last_epoch']
checkpoint = path.join(run_dir, "net_{}".format(start_epoch))
if type(start_epoch) is not int: start_epoch = 0
# Get model
model = ADNTrain(opts['learn'], opts['loss'], **opts['model'])
if opts['use_gpu']: model.cuda()
if path.isfile(checkpoint): model.resume(checkpoint)
# Get logger
logger = Logger(run_dir, start_epoch, args.run_name)
logger.add_loss_log(model.get_loss, opts["print_step"], opts['window_size'])
logger.add_iter_visual_log(model.get_visuals, opts['visualize_step'], "train_visuals")
logger.add_save_log(model.save, opts['save_step'])
# Train the model
for epoch in range(start_epoch, opts['num_epochs']):
for data in logger(train_loader):
model.optimize(*data)
model.update_lr()