-
Notifications
You must be signed in to change notification settings - Fork 107
/
main.py
310 lines (246 loc) · 10.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import argparse
from net import *
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
seed = 8964
# input image path
parser = argparse.ArgumentParser()
parser.add_argument('--phase', type=str, default='Test',
help='Train/Test network.')
class MODEL(Network):
"""docstring for MODEL"""
def __init__(self):
Network.__init__(self)
self.log_dir = 'pretrained'
self.eval_file = './dataset/r3d_test.txt'
self.loss_type = 'balanced'
def convert_one_hot_to_image(self, one_hot, dtype='float', act=None):
if act == 'softmax':
one_hot = tf.nn.softmax(one_hot, axis=-1)
[n, h, w, c] = one_hot.shape.as_list()
im = tf.reshape(tf.argmax(one_hot, axis=-1), [n, h, w, 1])
if dtype == 'int':
im = tf.cast(im, dtype=tf.uint8)
else:
im = tf.cast(im, dtype=tf.float32)
return im
def cross_two_tasks_weight(self, y1, y2):
p1 = tf.reduce_sum(y1)
p2 = tf.reduce_sum(y2)
w1 = p2 / (p1 + p2)
w2 = p1 / (p1 + p2)
return w1, w2
def balanced_entropy(self, x, y):
# cliped_by_eps
eps = 1e-6
z = tf.nn.softmax(x)
cliped_z = tf.clip_by_value(z, eps, 1-eps)
log_z = tf.log(cliped_z)
num_classes = y.shape.as_list()[-1]
ind = tf.argmax(y, -1, output_type=tf.int32)
# ind = tf.reshape(ind, shape=[1, 512, 512, 1]) # for debugging
total = tf.reduce_sum(y) # total foreground pixels
m_c = [] # index mask
n_c = [] # each class foreground pixels
for c in xrange(num_classes):
m_c.append(tf.cast(tf.equal(ind, c), dtype=tf.int32))
n_c.append(tf.cast(tf.reduce_sum(m_c[-1]), dtype=tf.float32))
# compute count
c = []
for i in xrange(num_classes):
c.append(total - n_c[i])
tc = tf.add_n(c)
# use for compute loss
loss = 0.
for i in xrange(num_classes):
w = c[i] / tc
m_c_one_hot = tf.one_hot((i*m_c[i]), num_classes, axis=-1)
y_c = m_c_one_hot*y
loss += w*tf.reduce_mean(-tf.reduce_sum(y_c*log_z, axis=1))
return (loss / num_classes) # mean
def train(self, loader_dict, num_batch, max_step=40000):
images = loader_dict['images']
labels_r_hot = loader_dict['label_rooms']
labels_cw_hot = loader_dict['label_boundaries']
max_ep = max_step // num_batch
print 'max_step = {}, max_ep = {}, num_batch = {}'.format(max_step, max_ep, num_batch)
logits1, logits2 = self.forward(images, init_with_pretrain_vgg=False)
if self.loss_type == 'balanced':
# in-task loss balance
loss1 = self.balanced_entropy(logits1, labels_r_hot) # multi classes balance
loss2 = self.balanced_entropy(logits2, labels_cw_hot)
else:
loss1 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits1, labels=labels_r_hot, name='bce1'))
loss2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits2, labels=labels_cw_hot, name='bce2'))
# compute cross loss balance weight
w1, w2 = self.cross_two_tasks_weight(labels_r_hot, labels_cw_hot)
loss = (w1*loss1 + w2*loss2)
optim = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(loss, colocate_gradients_with_ops=True) # gradient ops assign to same device as forward ops
# # add image summary
# tf.summary.image('input', images)
# tf.summary.image('label_r', self.convert_one_hot_to_image(labels_r_hot))
# tf.summary.image('predict_room', self.convert_one_hot_to_image(logits1, act='softmax')) # room type to use argmax to visualize
# tf.summary.image('predict_close_wall', tf.nn.sigmoid(logits2)) # boundaries type to use argmax to visualize
# # add scalar summary
# tf.summary.scalar('bce', loss)
# define session
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth=True # prevent the program occupies all GPU memory
with tf.Session(config=config) as sess:
# init all variables in graph
sess.run(tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer()))
# saver
saver = tf.train.Saver(max_to_keep=10)
# filewriter for log info
# log_dir = self.log_dir+'/run-%02d%02d-%02d%02d' % tuple(time.localtime(time.time()))[1:5]
# writer = tf.summary.FileWriter(log_dir)
# merged = tf.summary.merge_all()
# coordinator for queue runner
coord = tf.train.Coordinator()
# start queue
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
print "Start Training!"
total_times = 0
for ep in xrange(max_ep): # epoch loop
for n in xrange(num_batch): # batch loop
tic = time.time()
# [loss_value, update_value, summaries] = sess.run([loss, optim, merged])
[loss_value, update_value] = sess.run([loss, optim])
duration = time.time()-tic
total_times += duration
step = int(ep*num_batch + n)
# write log
print 'step {}: loss = {:.3}; {:.2} data/sec, excuted {} minutes'.format(step,
loss_value, 1.0/duration, int(total_times/60))
# writer.add_summary(summaries, global_step=step)
# save model parameters after 2 epoch training
if ep % 2 == 0:
saver.save(sess, self.log_dir+'/model', global_step=ep)
self.evaluate(sess=sess, epoch=ep)
saver.save(sess, self.log_dir+'/model', global_step=max_ep)
self.evaluate(sess=sess, epoch=max_ep)
# close session
coord.request_stop()
coord.join(threads)
sess.close()
def infer(self, save_dir='out', resize=True, merge=True):
print "generating test set of {}.... will save to [./{}]".format(self.eval_file, save_dir)
room_dir = os.path.join(save_dir, 'room')
close_wall_dir = os.path.join(save_dir, 'boundary')
if not os.path.exists(save_dir):
os.mkdir(save_dir)
if not os.path.exists(room_dir):
os.mkdir(room_dir)
if not os.path.exists(close_wall_dir):
os.mkdir(close_wall_dir)
x = tf.placeholder(shape=[1, 512, 512, 3], dtype=tf.float32)
logits1, logits2 = self.forward(x, init_with_pretrain_vgg=False)
rooms = self.convert_one_hot_to_image(logits1, act='softmax', dtype='int')
close_walls = self.convert_one_hot_to_image(logits2, act='softmax', dtype='int')
config = tf.ConfigProto(allow_soft_placement=True)
sess = tf.Session(config=config)
sess.run(tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer()))
saver = tf.train.Saver() # restore all parameters
saver.restore(sess, save_path = tf.train.latest_checkpoint(self.log_dir))
# infer one by one
paths = open(self.eval_file, 'r').read().splitlines()
paths = [p.split('\t')[0] for p in paths]
for p in paths:
im = imread(p, mode='RGB')
im_x = imresize(im, (512,512,3)) / 255. # resize and normalize
im_x = np.reshape(im_x, (1,512,512,3))
[out1, out2] = sess.run([rooms, close_walls], feed_dict={x: im_x})
if resize:
# out1 = imresize(np.squeeze(out1), (im.shape[0], im.shape[1])) # resize back
# out2 = imresize(np.squeeze(out2), (im.shape[0], im.shape[1])) # resize back
out1_rgb = ind2rgb(np.squeeze(out1))
out1_rgb = imresize(out1_rgb, (im.shape[0], im.shape[1])) # resize back
out2_rgb = ind2rgb(np.squeeze(out2), color_map=floorplan_boundary_map)
out2_rgb = imresize(out2_rgb, (im.shape[0], im.shape[1])) # resize back
else:
out1_rgb = ind2rgb(np.squeeze(out1))
out2_rgb = ind2rgb(np.squeeze(out2), color_map=floorplan_boundary_map)
if merge:
out1 = np.squeeze(out1)
out2 = np.squeeze(out2)
out1[out2==2] = 10
out1[out2==1] = 9
# out3_rgb = ind2rgb(out1, color_map=floorplan_fuse_map_figure) # use for present
out3_rgb = ind2rgb(out1, color_map=floorplan_fuse_map) # use for present
name = p.split('/')[-1]
save_path1 = os.path.join(room_dir, name.split('.jpg')[0]+'_rooms.png')
save_path2 = os.path.join(close_wall_dir, name.split('.jpg')[0]+'_bd_rm.png')
save_path3 = os.path.join(save_dir, name.split('.jpg')[0]+'_rooms.png')
imsave(save_path1, out1_rgb)
imsave(save_path2, out2_rgb)
if merge:
imsave(save_path3, out3_rgb)
# imsave(save_path4, out4)
print 'Saving prediction: {}'.format(name)
def evaluate(self, sess, epoch, num_of_classes=11):
x = tf.placeholder(shape=[1, 512, 512, 3], dtype=tf.float32)
logits1, logits2 = self.forward(x, init_with_pretrain_vgg=False)
predict_bd = self.convert_one_hot_to_image(logits2, act='softmax', dtype='int')
predict_room = self.convert_one_hot_to_image(logits1, act='softmax', dtype='int')
paths = open(self.eval_file, 'r').read().splitlines()
image_paths = [p.split('\t')[0] for p in paths] # image
gt2_paths = [p.split('\t')[2] for p in paths] # 2 denote doors (and windows)
gt3_paths = [p.split('\t')[3] for p in paths] # 3 denote rooms
gt4_paths = [p.split('\t')[-1] for p in paths] # last one denote close wall
n = len(paths)
hist = np.zeros((num_of_classes, num_of_classes))
for i in xrange(n):
im = imread(image_paths[i], mode='RGB')
# for fuse label
dd = imread(gt2_paths[i], mode='L')
rr = imread(gt3_paths[i], mode='RGB')
cw = imread(gt4_paths[i], mode='L')
im = imresize(im, (512, 512, 3)) / 255. # normalize input image
im = np.reshape(im, (1,512,512,3))
# merge label
rr = imresize(rr, (512, 512, 3))
rr_ind = rgb2ind(rr)
cw = imresize(cw, (512, 512)) / 255
dd = imresize(dd, (512, 512)) / 255
cw = (cw>0.5).astype(np.uint8)
dd = (dd>0.5).astype(np.uint8)
rr_ind[cw==1] = 10
rr_ind[dd==1] = 9
# merge prediciton
rm_ind, bd_ind = sess.run([predict_room, predict_bd], feed_dict={x: im})
rm_ind = np.squeeze(rm_ind)
bd_ind = np.squeeze(bd_ind)
rm_ind[bd_ind==2] = 10
rm_ind[bd_ind==1] = 9
hist += fast_hist(rm_ind.flatten(), rr_ind.flatten(), num_of_classes)
overall_acc = np.diag(hist).sum() / hist.sum()
mean_acc = np.diag(hist) / (hist.sum(1) + 1e-6)
# iu = np.diag(hist) / (hist.sum(1) + 1e-6 + hist.sum(0) - np.diag(hist))
mean_acc9 = (np.nansum(mean_acc[:7])+mean_acc[-2]+mean_acc[-1]) / 9.
file = open('EVAL_'+self.log_dir, 'a')
print>>file, 'Model at epoch {}: overall accuracy = {:.4}, mean_acc = {:.4}'.format(epoch, overall_acc, mean_acc9)
for i in xrange(mean_acc.shape[0]):
if i not in [7 ,8]: # ingore class 7 & 8
print>>file, '\t\tepoch {}: {}th label: accuracy = {:.4}'.format(epoch, i, mean_acc[i])
file.close()
def main(args):
tf.set_random_seed(seed)
np.random.seed(seed)
random.seed(seed)
model = MODEL()
if args.phase.lower() == 'train':
loader_dict, num_batch = data_loader_bd_rm_from_tfrecord(batch_size=1)
# START TRAINING
tic = time.time()
model.train(loader_dict, num_batch)
toc = time.time()
print 'total training + evaluation time = {} minutes'.format((toc-tic)/60)
elif args.phase.lower() == 'test':
model.infer()
else:
pass
if __name__ == '__main__':
FLAGS, unparsed = parser.parse_known_args()
main(FLAGS)