-
Notifications
You must be signed in to change notification settings - Fork 2
/
baseline_greddy_improved.py
122 lines (82 loc) · 3.27 KB
/
baseline_greddy_improved.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import time
import numpy as np
# Greedy algorithm with value calculated by Pi = 1 - (1-A)(1-A^2)...(1-A^10), independent events probability
import statistics as s
import ndlib.models.epidemics as ep
import ndlib.models.ModelConfig as mc
import networkx as nx
def greedy_improved(g, cost, population, infected, infected_no, mc, config):
start = time.time()
I = np.ones((5000, 1))
F = np.ones((5000, 5000))
N = np.ones((5000, 5000))
A = nx.to_numpy_matrix(g, nodelist=list(range(5000)))
for i in range(0, 10):
B = np.power(A, i + 1)
C = F - B
N = np.multiply(N, C)
P = F - N
pi = np.matmul(P, I)
value = {}
for i in range(5000):
value[i] = pi[i, 0]
# v/w in knapsack
unit_v = {}
for i in range(5000):
unit_v[i] = value[i] / cost[i]
sorted_4_greedy = []
for node in sorted(unit_v, key=unit_v.get, reverse=True):
sorted_4_greedy.append(node)
time1 = time.time() - start
for percent in range(5, 95, 5):
k = int(population * percent / 100)
start = time.time()
current_greedy = 0
greedy = []
for node in sorted_4_greedy:
C = cost[node]
if (node not in infected) and (current_greedy + C <= k):
greedy.append(node)
current_greedy += C
else:
continue
time2 = time.time() - start + time1
# after immunizing the greedy algorithm
g_greedy = g.__class__()
g_greedy.add_nodes_from(g)
g_greedy.add_edges_from(g.edges)
for node in greedy:
g_greedy.remove_node(node)
# model_greedy = ep.IndependentCascadesModel(g_greedy)
config_greedy = mc.Configuration()
config_greedy.add_model_initial_configuration('Infected', infected)
for a, b in g_greedy.edges():
weight = config.config["edges"]['threshold'][(a, b)]
config_greedy.add_edge_configuration('threshold', (a, b), weight)
g_greedy[a][b]['weight'] = weight
# model_greedy.set_initial_status(config_greedy)
# Simulation 10 times
result = []
for i in range(10):
model_greedy = ep.IndependentCascadesModel(g_greedy)
model_greedy.set_initial_status(config_greedy)
iterations_greedy = model_greedy.iteration_bunch(10)
trends_greedy = model_greedy.build_trends(iterations_greedy)
infected_greedy = 0
for i in range(10):
for j in iterations_greedy[i]['status']:
a = iterations_greedy[i]['status'][j]
if a == 1:
b = cost[j]
else:
b = 0
infected_greedy += b
effect = (infected_no - infected_greedy - current_greedy) / population
result.append(effect)
# print("\nImmuned partition: ", percent)
# print("\nProtect number of individuals: ", s.mean(result), " +- ", s.stdev(result))
# print("\nTime: ", time2)
print("Immuned partition: ", percent, end=', ')
print("Protect number of individuals: ", s.mean(result), " +- ", s.stdev(result), end=', ')
print("Time: ", time2)
return value, time2