-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathevaluate.py
282 lines (241 loc) · 11.4 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import argparse
import scipy
from scipy import ndimage
import cv2
import numpy as np
import sys
import json
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import torchvision.models as models
import torch.nn.functional as F
from torch.utils import data
import networks
from dataset.datasets import CSDataSet
from collections import OrderedDict
import os
import scipy.ndimage as nd
from math import ceil
from PIL import Image as PILImage
from utils.pyt_utils import load_model
from engine import Engine
IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32)
DATA_DIRECTORY = 'cityscapes'
DATA_LIST_PATH = './dataset/list/cityscapes/val.lst'
IGNORE_LABEL = 255
BATCH_SIZE = 4
NUM_CLASSES = 19
NUM_STEPS = 500 # Number of images in the validation set.
INPUT_SIZE = '769,769'
RESTORE_FROM = './deeplab_resnet.ckpt'
def get_parser():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DeepLabLFOV Network")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the PASCAL VOC dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the dataset.")
parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL,
help="The index of the label to ignore during the training.")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--gpu", type=str, default='0',
help="choose gpu device.")
parser.add_argument("--input-size", type=str, default=INPUT_SIZE,
help="Comma-separated string with height and width of images.")
parser.add_argument("--num-workers", type=int, default=8,
help="choose the number of recurrence.")
parser.add_argument("--whole", type=bool, default=False,
help="use whole input size.")
parser.add_argument("--model", type=str, default='acfnet',
help="choose model.")
return parser
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def pad_image(img, target_size):
"""Pad an image up to the target size."""
rows_missing = target_size[0] - img.shape[2]
cols_missing = target_size[1] - img.shape[3]
padded_img = np.pad(img, ((0, 0), (0, 0), (0, rows_missing), (0, cols_missing)), 'constant')
return padded_img
def predict_sliding(net, image, tile_size, classes, recurrence):
interp = nn.Upsample(size=tile_size, mode='bilinear', align_corners=True)
image_size = image.shape
overlap = 1/3
stride = ceil(tile_size[0] * (1 - overlap))
tile_rows = int(ceil((image_size[2] - tile_size[0]) / stride) + 1) # strided convolution formula
tile_cols = int(ceil((image_size[3] - tile_size[1]) / stride) + 1)
# print("Need %i x %i prediction tiles @ stride %i px" % (tile_cols, tile_rows, stride))
full_probs = np.zeros((image_size[0], image_size[2], image_size[3], classes))
count_predictions = np.zeros((1, image_size[2], image_size[3], classes))
tile_counter = 0
for row in range(tile_rows):
for col in range(tile_cols):
x1 = int(col * stride)
y1 = int(row * stride)
x2 = min(x1 + tile_size[1], image_size[3])
y2 = min(y1 + tile_size[0], image_size[2])
x1 = max(int(x2 - tile_size[1]), 0) # for portrait images the x1 underflows sometimes
y1 = max(int(y2 - tile_size[0]), 0) # for very few rows y1 underflows
img = image[:, :, y1:y2, x1:x2]
padded_img = pad_image(img, tile_size)
# plt.imshow(padded_img)
# plt.show()
tile_counter += 1
# print("Predicting tile %i" % tile_counter)
padded_prediction = net(torch.from_numpy(padded_img).cuda(non_blocking=True))
if isinstance(padded_prediction, list):
#padded_prediction = padded_prediction[0]
padded_prediction = padded_prediction[0] + padded_prediction[1]
padded_prediction = interp(padded_prediction).cpu().numpy().transpose(0,2,3,1)
prediction = padded_prediction[0, 0:img.shape[2], 0:img.shape[3], :]
count_predictions[0, y1:y2, x1:x2] += 1
full_probs[:, y1:y2, x1:x2] += prediction # accumulate the predictions also in the overlapping regions
# average the predictions in the overlapping regions
full_probs /= count_predictions
# visualize normalization Weights
# plt.imshow(np.mean(count_predictions, axis=2))
# plt.show()
return full_probs
def predict_whole(net, image, tile_size, recurrence):
N_, C_, H_, W_ = image.shape
image = torch.from_numpy(image)
interp = nn.Upsample(size=(H_, W_), mode='bilinear', align_corners=True)
prediction = net(image.cuda())
if isinstance(prediction, list):
prediction = prediction[0]
prediction = interp(prediction).cpu().numpy().transpose(0,2,3,1)
return prediction
def predict_multiscale(net, image, tile_size, scales, classes, flip_evaluation, recurrence):
"""
Predict an image by looking at it with different scales.
We choose the "predict_whole_img" for the image with less than the original input size,
for the input of larger size, we would choose the cropping method to ensure that GPU memory is enough.
"""
image = image.data
N_, C_, H_, W_ = image.shape
full_probs = np.zeros((N_, H_, W_, classes))
for scale in scales:
scale = float(scale)
scale_image = ndimage.zoom(image, (1.0, 1.0, scale, scale), order=1, prefilter=False)
# scaled_probs = predict_whole(net, scale_image, tile_size, recurrence)
scaled_probs = predict_sliding(net, scale_image, tile_size, classes, recurrence)
if flip_evaluation == True:
# flip_scaled_probs = predict_whole(net, scale_image[:,:,:,::-1].copy(), tile_size, recurrence)
flip_scaled_probs = predict_sliding(net, scale_image[:,:,:,::-1].copy(), tile_size, classes, recurrence)
scaled_probs = 0.5 * (scaled_probs + flip_scaled_probs[:,::-1,:])
full_probs += scaled_probs
full_probs /= len(scales)
return full_probs
def get_confusion_matrix(gt_label, pred_label, class_num):
"""
Calcute the confusion matrix by given label and pred
:param gt_label: the ground truth label
:param pred_label: the pred label
:param class_num: the nunber of class
:return: the confusion matrix
"""
index = (gt_label * class_num + pred_label).astype('int32')
label_count = np.bincount(index)
confusion_matrix = np.zeros((class_num, class_num))
for i_label in range(class_num):
for i_pred_label in range(class_num):
cur_index = i_label * class_num + i_pred_label
if cur_index < len(label_count):
confusion_matrix[i_label, i_pred_label] = label_count[cur_index]
return confusion_matrix
def main():
"""Create the model and start the evaluation process."""
parser = get_parser()
with Engine(custom_parser=parser) as engine:
args = parser.parse_args()
cudnn.benchmark = True
h, w = map(int, args.input_size.split(','))
if args.whole:
input_size = (1024, 2048)
else:
input_size = (h, w)
seg_model = eval('networks.' + args.model + '.Seg_Model')(
num_classes=args.num_classes)
load_model(seg_model, args.restore_from)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seg_model.to(device)
model = engine.data_parallel(seg_model)
model.eval()
dataset = CSDataSet(args.data_dir, args.data_list, crop_size=(1024, 2048), mean=IMG_MEAN, scale=False, mirror=False)
test_loader, test_sampler = engine.get_test_loader(dataset)
if engine.distributed:
test_sampler.set_epoch(0)
data_list = []
confusion_matrix = np.zeros((args.num_classes,args.num_classes))
palette = get_palette(256)
save_path = os.path.join(os.path.dirname(args.restore_from), 'outputs')
if not os.path.exists(save_path):
os.makedirs(save_path)
bar_format = '{desc}[{elapsed}<{remaining},{rate_fmt}]'
pbar = tqdm(range(len(test_loader)), file=sys.stdout,
bar_format=bar_format)
dataloader = iter(test_loader)
for idx in pbar:
image, label, size, name = dataloader.next()
size = size[0].numpy()
with torch.no_grad():
output = predict_multiscale(model, image, input_size, [1.0], args.num_classes, False, 0)
seg_pred = np.asarray(np.argmax(output, axis=3), dtype=np.uint8)
seg_gt = np.asarray(label.numpy()[:,:size[0],:size[1]], dtype=np.int)
for i in range(image.size(0)):
output_im = PILImage.fromarray(seg_pred[i])
output_im.putpalette(palette)
output_im.save(os.path.join(save_path, name[i]+'.png'))
ignore_index = seg_gt != 255
seg_gt = seg_gt[ignore_index]
seg_pred = seg_pred[ignore_index]
# show_all(gt, output)
confusion_matrix += get_confusion_matrix(seg_gt, seg_pred, args.num_classes)
print_str = ' Iter{}/{}'.format(idx + 1, len(test_loader))
pbar.set_description(print_str, refresh=False)
confusion_matrix = torch.from_numpy(confusion_matrix).contiguous().cuda()
confusion_matrix = engine.all_reduce_tensor(confusion_matrix, norm=False).cpu().numpy()
pos = confusion_matrix.sum(1)
res = confusion_matrix.sum(0)
tp = np.diag(confusion_matrix)
IU_array = (tp / np.maximum(1.0, pos + res - tp))
mean_IU = IU_array.mean()
# getConfusionMatrixPlot(confusion_matrix)
if engine.distributed and engine.local_rank == 0:
print({'meanIU':mean_IU, 'IU_array':IU_array})
model_path = os.path.dirname(args.restore_from)
with open(os.path.join(model_path, 'result.txt'), 'w') as f:
f.write(json.dumps({'meanIU':mean_IU, 'IU_array':IU_array.tolist()}))
if __name__ == '__main__':
main()