-
Notifications
You must be signed in to change notification settings - Fork 7
/
visualization.c
451 lines (403 loc) · 14.2 KB
/
visualization.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
///////////////////////////////////////////////////////////////////////////////
///
/// \file visualization.c
///
/// \brief Visualization features
///
/// \author Wangda Zuo
/// University of Miami
/// W.Zuo@miami.edu
///
/// \date 8/3/2013
///
///////////////////////////////////////////////////////////////////////////////
#include "visualization.h"
///////////////////////////////////////////////////////////////////////////////
/// OpenGL specific drawing routines for a 2D plane
///
///\param para Pointer to FFD parameters
///
///\return No return needed
///////////////////////////////////////////////////////////////////////////////
void pre_2d_display(PARA_DATA *para) {
int win_x=para->outp->winx, win_y=para->outp->winy;
int Lx=para->geom->Lx, Ly = para->geom->Ly;
glViewport(0, 0, win_x, win_y);
glMatrixMode(GL_PROJECTION );
glLoadIdentity();
/*---------------------------------------------------------------------------
| Define the view domain
| gluOrtho2D ( left , right , bottom , top ) ¡ú None
---------------------------------------------------------------------------*/
gluOrtho2D(0.0, Lx, 0.0, Ly);
glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);
} // End of pre_2d_display()
///////////////////////////////////////////////////////////////////////////////
/// Function after the display
///
///\return No return needed
///////////////////////////////////////////////////////////////////////////////
void post_display(void) {
glutSwapBuffers();
} // End of post_display()
///////////////////////////////////////////////////////////////////////////////
/// FFD routines for GLUT display callback routines
///
///\param para Pointer to FFD parameters
///\param var Pointer to all variables
///
///\return No return needed
///////////////////////////////////////////////////////////////////////////////
void ffd_display_func(PARA_DATA *para, REAL **var) {
int k = (int) para->geom->kmax/2;
pre_2d_display(para);
switch(para->outp->screen) {
case 1:
draw_xy_velocity(para, var, k); break;
case 2:
draw_xy_density(para, var, k); break;
case 3:
draw_xy_temperature(para, var, k); break;
default:
break;
}
post_display();
} // End of ffd_display_func()
///////////////////////////////////////////////////////////////////////////////
/// FFD routine for GLUT idle callback
///
///\param para Pointer to FFD parameters
///\param var Pointer to all variables
///\param BINDEX Pointer to bounary index
///
///\return No return needed
///////////////////////////////////////////////////////////////////////////////
void ffd_idle_func(PARA_DATA *para, REAL **var, int **BINDEX) {
// Get the display in XY plane
get_xy_UI(para, var, (int)para->geom->kmax/2);
vel_step(para, var, BINDEX);
den_step(para, var, BINDEX);
temp_step(para, var, BINDEX);
if(para->outp->cal_mean == 1)
average_time(para, var);
// Update the visualization results after a few tiem steps
// to save the time for visualization
if(para->mytime->step_current%para->outp->tstep_display==0) {
glutSetWindow(para->outp->win_id);
glutPostRedisplay( );
}
timing(para);
} // End of ffd_idle_func()
///////////////////////////////////////////////////////////////////////////////
/// FFD routines for GLUT keyboard callback routines
///
///\param para Pointer to FFD parameters
///\param var Pointer to all variables
///\param BINDEX Pointer to bounary index
///\param key Character of the key
///
///\return No return needed
///////////////////////////////////////////////////////////////////////////////
void ffd_key_func(PARA_DATA *para, REAL **var, int **BINDEX,
unsigned char key) {
// Set control variable according to key input
switch(key) {
// Restart the simulation
case '0':
if(set_initial_data(para, var, BINDEX)) exit(1);
break;
// Quit
case 'q':
case 'Q':
free_data(var);
exit(0);
break;
// Draw velocity
case '1':
para->outp->screen = 1;
break;
// Draw temperature
case '2':
para->outp->screen = 2;
break;
// Draw contaminant concentration
case '3':
para->outp->screen = 3;
break;
// Start to calcualte mean value
case 'm':
case 'M':
para->outp->cal_mean = 1;
para->mytime->step_current = 0;
printf("start to calculate mean properties.\n");
break;
// Save the results
case 's':
case 'S':
if(para->outp->cal_mean == 1)
average_time(para, var);
write_tecplot_data(para, var, "result");
break;
// Reduce the drawed length of veloity
case 'k':
case 'K':
para->outp->v_length --;
break;
// Increase the drawed length of velocity
case 'l':
case 'L':
para->outp->v_length ++;
break;
}
} // End of ffd_key_func()
///////////////////////////////////////////////////////////////////////////////
/// FFD routines for GLUT mouse callback routines
///
///\param para Pointer to FFD parameters
///\param button Button of the mouse
///\param state State of the button
///\param x X-coordinate
///\param y Y-coordinate
///
///\return No return needed
///////////////////////////////////////////////////////////////////////////////
void ffd_mouse_func(PARA_DATA *para, int button, int state, int x, int y) {
para->outp->omx = para->outp->mx = x;
para->outp->omy = para->outp->my = y;
para->outp->mouse_down[button] = state == GLUT_DOWN;
} // End of ffd_mouse_func()
///////////////////////////////////////////////////////////////////////////////
/// FFD routines for setting the position
///
///\param para Pointer to FFD parameters
///\param x X-coordinate
///\param y Y-coordinate
///
///\return No return needed
///////////////////////////////////////////////////////////////////////////////
void ffd_motion_func(PARA_DATA *para, int x, int y) {
para->outp->mx = x;
para->outp->my = y;
} // End of ffd_motion_func()
///////////////////////////////////////////////////////////////////////////////
/// FFD routines for reshaping the window
///
///\param para Pointer to FFD parameters
///\param width Width of the window
///\param height Height of the window
///
///\return No return needed
///////////////////////////////////////////////////////////////////////////////
void ffd_reshape_func(PARA_DATA *para, int width, int height) {
glutSetWindow(para->outp->win_id);
glutReshapeWindow(width, height);
para->outp->winx = width;
para->outp->winy = height;
} // End of ffd_reshape_func()
///////////////////////////////////////////////////////////////////////////////
/// Relate mouse movements to forces & sources in XY plane
///
///\param para Pointer to FFD parameters
///\param var Pointer to all variables
///\param k K-index of the plane
///
///\return No return needed
///////////////////////////////////////////////////////////////////////////////
void get_xy_UI(PARA_DATA *para, REAL **var, int k) {
int imax = para->geom->imax, jmax = para->geom->jmax;
REAL Lx = para->geom->Lx, Ly = para->geom->Ly;
int i, j;
REAL *u_s = var[VXS], *v_s = var[VYS], *d_s = var[TRACE], *T_s = var[TEMPS];
REAL *x = var[X], *y = var[Y];
REAL x0, y0, x_click, y_click;
int IMAX = imax+2, IJMAX = (imax+2)*(jmax+2);
int win_x = para->outp->winx, win_y = para->outp->winy;
int mx = para->outp->mx, my = para->outp->my;
int *mouse_down = para->outp->mouse_down;
// Set initial value of source to 0
for(i=0; i<imax+1; i++)
for(j=0; j<jmax+1; j++)
u_s[IX(i,j,k)] = v_s[IX(i,j,k)] = d_s[IX(i,j,k)] = T_s[IX(i,j,k)] = 0.0;
// If no mouse action, return
if(!mouse_down[0] && !mouse_down[2] ) return;
x0 = x[IX(0,0,k)], y0 = y[IX(0,0,k)];
x_click = (mx/(REAL)win_x) * Lx;
y_click = (1.0f - my/(REAL)win_y) * Ly;
i = (int)( (mx/(REAL)win_x) * imax + 1);
j = (int)((1.0f - my/(REAL)win_y) * jmax + 1);
if(x[IX(i,j,k)] - x0 > x_click )
while(x[IX(i,j,k)] - x0 > x_click)
i--;
else
while(x[IX(i,j,k)] - x0 < x_click)
i++;
if(y[IX(i,j,k)]-y0 > y_click)
while(y[IX(i,j,k)]-y0 > y_click)
j--;
else
while(y[IX(i,j,k)]-y0 < y_click)
j++;
if(i<1 || i>imax || j<1 || j>jmax) return;
if(mouse_down[0]) {
u_s[IX(i,j,k)] = para->prob->force;
v_s[IX(i,j,k)] = para->prob->force;
}
//if(mouse_down[0]) T_s[IX(i,j)] = 1.0;
if(mouse_down[2])
d_s[IX(i,j,k)] = para->prob->source;
para->outp->omx = mx;
para->outp->omy = my;
return;
} // End of get_xy_UI( )
///////////////////////////////////////////////////////////////////////////////
/// Draw density distribution in XY plane
///
///\param para Pointer to FFD parameters
///\param var Pointer to all variables
///\param k K-index of the plane
///
///\return No return needed
///////////////////////////////////////////////////////////////////////////////
void draw_xy_density(PARA_DATA *para, REAL **var, int k) {
int i, j;
REAL d00, d01, d10, d11;
REAL *x = var[X], *y = var[Y], *dens = var[TRACE];
int imax = para->geom->imax, jmax = para->geom->jmax;
int IMAX = imax+2, IJMAX = (imax+2)*(jmax+2);
glBegin(GL_QUADS);
for(i=0; i<=imax; i++)
for(j=0; j<=jmax; j++) {
d00 = dens[IX(i, j ,k)];
d01 = dens[IX(i, j+1,k)];
d10 = dens[IX(i+1,j ,k)];
d11 = dens[IX(i+1,j+1,k)];
glColor3f(d00, d00, d00); glVertex2f(x[IX(i ,j,k)], y[IX(i,j ,k)]);
glColor3f(d10, d10, d10); glVertex2f(x[IX(i+1,j,k)], y[IX(i,j ,k)]);
glColor3f(d11, d11, d11); glVertex2f(x[IX(i+1,j,k)], y[IX(i,j+1,k)]);
glColor3f(d01, d01, d01); glVertex2f(x[IX(i ,j,k)], y[IX(i,j+1,k)]);
}
glEnd();
} // End of draw_xy_density()
///////////////////////////////////////////////////////////////////////////////
/// Draw temperature contour in XY plane
///
///\param para Pointer to FFD parameters
///\param var Pointer to all variables
///\param k K-index of the plane
///
///\return No return needed
///////////////////////////////////////////////////////////////////////////////
void draw_xy_temperature(PARA_DATA *para, REAL **var, int k) {
int i, j;
REAL *x = var[X], *y = var[Y], *z = var[Z], *temp = var[TEMP];
int mycolor;
int imax = para->geom->imax, jmax = para->geom->jmax;
int kmax = para->geom->kmax;
int IMAX = imax+2, IJMAX = (imax+2)*(jmax+2);
glBegin(GL_QUADS);
for(i=0; i<=imax; i++) {
for(j=0; j<=jmax; j++) {
mycolor = (int) 10 * (temp[IX(i,j,k)]/para->outp->Temp_ref);
mycolor = mycolor>10 ? 10: mycolor;
/*---------------------------------------------------------------------
| void glColor3b(GLbyte red, GLbyte green, GLbyte blue)
| control the color of the velocity field
---------------------------------------------------------------------*/
switch(mycolor) {
case 10:
glColor3f(1.000000f, 0.250000f, 0.250000f); break;
case 9:
glColor3f(0.951368f, 0.460596f, 0.088036f); break;
case 8:
glColor3f(0.811394f, 0.683088f, 0.005518f); break;
case 7:
glColor3f(0.608390f, 0.868521f, 0.023089f); break;
case 6:
glColor3f(0.383447f, 0.979360f, 0.137193f); break;
case 5:
glColor3f(0.182096f, 0.993172f, 0.324733f); break;
case 4:
glColor3f(0.045092f, 0.907159f, 0.547749f); break;
case 3:
glColor3f(0.000167f, 0.738733f, 0.761100f); break;
case 2:
glColor3f(0.060675f, 0.512914f, 0.926411f); break;
case 1:
glColor3f(0.198814f, 0.304956f, 0.996230f); break;
default:
glColor3f(0.404253f, 0.122874f, 0.972873f); break;
}
glVertex2f(x[IX(i ,j,k)], y[IX(i,j ,k)]);
glVertex2f(x[IX(i+1,j,k)], y[IX(i,j ,k)]);
glVertex2f(x[IX(i+1,j,k)], y[IX(i,j+1,k)]);
glVertex2f(x[IX(i ,j,k)], y[IX(i,j+1,k)]);
}
}
glEnd();
} // End of draw_xy_temperature()
///////////////////////////////////////////////////////////////////////////////
/// Draw velocity in XY plane
///
///\param para Pointer to FFD parameters
///\param var Pointer to all variables
///\param k K-index of the plane
///
///\return No return needed
///////////////////////////////////////////////////////////////////////////////
void draw_xy_velocity(PARA_DATA *para, REAL **var, int k) {
int i, j;
REAL x0, y0;
REAL *x = var[X], *y = var[Y];
REAL *u = var[VX], *v = var[VY];
int mycolor;
int imax = para->geom->imax, jmax = para->geom->jmax;
int IMAX = imax+2, IJMAX = (imax+2)*(jmax+2);
/*---------------------------------------------------------------------------
| specify the width of rasterized lines
---------------------------------------------------------------------------*/
glLineWidth(1.0);
glBegin(GL_LINES);
j = 1;
for(i=1; i<=imax; i+=para->outp->i_N) {
x0 = x[IX(i,j,k)];
for(j=1; j<=jmax; j+=para->outp->j_N) {
y0 = y[IX(i,j,k)];
mycolor = (int) 100 * fabs(u[IX(i,j,k)]) /
fabs(para->outp->v_ref);
mycolor = mycolor>10 ? 10: mycolor;
/*-----------------------------------------------------------------------
| void glColor3b(GLbyte red, GLbyte green, GLbyte blue)
| control the color of the velocity field
-----------------------------------------------------------------------*/
switch(mycolor) {
case 10:
glColor3f(1.000000f, 0.250000f, 0.250000f); break;
case 9:
glColor3f(0.951368f, 0.460596f, 0.088036f); break;
case 8:
glColor3f(0.811394f, 0.683088f, 0.005518f); break;
case 7:
glColor3f(0.608390f, 0.868521f, 0.023089f); break;
case 6:
glColor3f(0.383447f, 0.979360f, 0.137193f); break;
case 5:
glColor3f(0.182096f, 0.993172f, 0.324733f); break;
case 4:
glColor3f(0.045092f, 0.907159f, 0.547749f); break;
case 3:
glColor3f(0.000167f, 0.738733f, 0.761100f); break;
case 2:
glColor3f(0.060675f, 0.512914f, 0.926411f); break;
case 1:
glColor3f(0.198814f, 0.304956f, 0.996230f); break;
default:
glColor3f(0.404253f, 0.122874f, 0.972873f); break;
}
glVertex2f(x0, y0);
glVertex2f(x0 + para->outp->v_length*u[IX(i,j,k)],
y0 + para->outp->v_length*v[IX(i,j,k)]);
}
}
glEnd ();
} // End of draw_xy_velocity()