-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
73 lines (67 loc) · 2.82 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import math
def clip_gradient(optimizer, grad_clip):
for group in optimizer.param_groups:
for param in group['params']:
if param.grad is not None:
param.grad.data.clamp_(-grad_clip, grad_clip)
def adjust_lr(optimizer, init_lr, epoch,):
if epoch in [200,300,375,450]:
for param_group in optimizer.param_groups:
param_group['lr'] = 0.1 * param_group['lr']
lr = param_group['lr']
return lr
for param_group in optimizer.param_groups:
lr = param_group['lr']
return lr
class LR_Scheduler(object):
"""Learning Rate Scheduler
Step mode: ``lr = baselr * 0.1 ^ {floor(epoch-1 / lr_step)}``
Cosine mode: ``lr = baselr * 0.5 * (1 + cos(iter/maxiter))``
Poly mode: ``lr = baselr * (1 - iter/maxiter) ^ 0.9``
Args:
args:
:attr:`args.lr_scheduler` lr scheduler mode (`cos`, `poly`),
:attr:`args.lr` base learning rate, :attr:`args.epochs` number of epochs,
:attr:`args.lr_step`
iters_per_epoch: number of iterations per epoch
"""
def __init__(self, mode, base_lr, num_epochs, iters_per_epoch=0,
lr_step=0, warmup_epochs=0):
self.mode = mode
print('Using {} LR Scheduler!'.format(self.mode))
self.lr = base_lr
if mode == 'step':
assert lr_step
self.lr_step = lr_step
self.iters_per_epoch = iters_per_epoch
self.N = num_epochs * iters_per_epoch
self.epoch = -1
self.warmup_iters = warmup_epochs * iters_per_epoch
def __call__(self, optimizer, i, epoch): #, best_pred):
T = epoch * self.iters_per_epoch + i
if self.mode == 'cos':
lr = 0.5 * self.lr * (1 + math.cos(1.0 * T / self.N * math.pi))
elif self.mode == 'poly':
lr = self.lr * pow((1 - 1.0 * T / self.N),0.9)
elif self.mode == 'step':
lr = self.lr * (0.1 ** (epoch // self.lr_step))
else:
raise NotImplemented
# warm up lr schedule
if self.warmup_iters > 0 and T < self.warmup_iters:
lr = lr * 1.0 * T / self.warmup_iters
# if epoch > self.epoch:
# print('\n=>Epoches %i, learning rate = %.4f, \
# previous best = %.4f' % (epoch, lr, best_pred))
# self.epoch = epoch
assert lr >= 0
self._adjust_learning_rate(optimizer, lr)
return lr
def _adjust_learning_rate(self, optimizer, lr):
if len(optimizer.param_groups) == 1:
optimizer.param_groups[0]['lr'] = lr
else:
# enlarge the lr at the head
optimizer.param_groups[0]['lr'] = lr
for i in range(1, len(optimizer.param_groups)):
optimizer.param_groups[i]['lr'] = lr * 10