forked from PiotrDabkowski/pytorch-saliency
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_black_box.py
33 lines (28 loc) · 1.1 KB
/
test_black_box.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from sal.utils.pytorch_trainer import *
from sal.datasets import imagenet_dataset
from sal.saliency_model import get_black_box_fn
from sal.utils.resnet_encoder import get_resnet50encoder_black_box_fn
# examle model choices
from torchvision.models.alexnet import alexnet
from torchvision.models.resnet import resnet50
from torchvision.models.squeezenet import squeezenet1_1
# ---- config ----
batch_size = 128
dts = imagenet_dataset
val_dts = dts.get_val_dataset(size=224)
num_validation_examples = 5000 # tests on up to specified number of examples, set to 1e10 to test on the whole val dataset.
black_box_fn = get_black_box_fn(model_zoo_model=resnet50)
# ----------------
@ev_batch_to_images_labels
def ev(_images, _labels):
_, guesses = torch.max(black_box_fn(_images), 1)
return torch.mean((guesses==_labels).float()).data[0]
print('Please wait, validating, it can take a few minutes...')
scores = []
i = 0
for batch in dts.get_loader(val_dts, batch_size=batch_size):
scores.append(ev(batch))
i += batch_size
if i > num_validation_examples:
break
print('Top 1 accuracy:', np.mean(scores))