-
Notifications
You must be signed in to change notification settings - Fork 2
/
parse_test_res.py
268 lines (226 loc) · 8.13 KB
/
parse_test_res.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""
Goal
---
1. Read test results from train.log*** files
2. Compute mean and std across different folders (seeds)
Usage
---
Assume the output files are saved under output/my_experiment,
which contains results of different seeds, e.g.,
my_experiment/
exp-1/
train.log***
exp-2/
train.log***
Run the following command from the root directory:
$ python parse_test_res.py output/my_experiment/exp-1
Add --ci95 to the argument if you wanna get 95% confidence
interval instead of standard deviation:
$ python tools/parse_test_res.py output/my_experiment --ci95
If my_experiment/ has the following structure,
my_experiment/
exp-1/
train.log***
exp-2/
train.log***
Run
$ python parse_test_res.py output/my_experiment/ --multi-exp
"""
import re
import numpy as np
import os.path as osp
import os
import math
import argparse
from collections import OrderedDict, defaultdict
from dassl.utils import check_isfile, listdir_nohidden
def compute_ci95(res):
return 1.96 * np.std(res) / np.sqrt(len(res))
def parse_function(*metrics, directory='', args=None, end_signal=None):
print(f'Parsing files in {directory}')
# subdirs = listdir_nohidden(directory, sort=True)
outputs = []
file_list = os.listdir(directory)
for file in file_list:
if 'log' in file or 'pt.txt' in file:
num = 0
fpath = osp.join(directory, file)
with open(fpath, 'r') as f:
lines = f.readlines()
complete_flag = False
complete_flag = True
output = OrderedDict()
for line in lines:
# if 'Final Flag' in line:
if complete_flag:
if '[Validation] EPOCH: ' in line:
# ipdb.set_trace()
if '= ' in line:
num = max(float(line.split('= ')[1]), num)
else:
num = max(float(line.split('=')[1].split(' ')[0]), num)
elif 'Best inctance avg mIOU is: ' in line:
num = max(float(line.split('Best inctance avg mIOU is: ')[1]), num)
elif '[TEST_VOTE_time ' in line:
num = max(float(line.split('best acc = ')[1]), num)
elif '[TEST] acc' in line:
num = max(float(line.split('[TEST] acc = ')[1]), num)
else:
pass
output['val acc:'] = num
if complete_flag:
outputs.append(output)
else:
pass
metrics_results = defaultdict(list)
for output in outputs:
msg = ''
for key, value in output.items():
if isinstance(value, float):
msg += f'{key}: {value:.3f}%. '
else:
msg += f'{key}: {value}. '
if key != 'file':
metrics_results[key].append(value)
print(msg)
output_results = OrderedDict()
print('===')
print(f'Summary of directory: {directory}')
for key, values in metrics_results.items():
avg = np.mean(values)
max_value = np.max(values)
std = compute_ci95(values) if args.ci95 else np.std(values)
print(f'* {key}: {max_value:.3f}%; {avg:.3f}% +- {std:.3f}%')
output_results[key] = avg
print('===')
return output_results
def parse_function_fewshot(*metrics, directory='', args=None, end_signal=None):
print(f'Parsing files in {directory}')
# subdirs = listdir_nohidden(directory, sort=True)
outputs = []
file_list = os.listdir(directory)
file_list.sort()
for file in file_list:
if 'log' in file or 'pt.txt' in file:
num = 0
way = 'None'
shot = 'None'
fpath = osp.join(directory, file)
with open(fpath, 'r') as f:
lines = f.readlines()
output = OrderedDict()
for line in lines:
if 'args.way :' in line:
way = line.split('args.way :')[1]
if 'args.shot :' in line:
shot = line.split('args.shot :')[1]
if way != 'None' and shot != 'None':
if ' acc = ' in line:
num = max(float(line.split('acc =')[1]), num)
elif 'best_acc = ' in line and '*********' not in line:
num = max(float(line.split('best_acc =')[1]), num)
else:
pass
exp_setting = way[:-1] + 'way' + shot[:-1] + 'shot'
output[exp_setting] = num
if way != 'None' and shot != 'None':
outputs.append(output)
else:
pass
metrics_results = defaultdict(list)
for output in outputs:
msg = ''
for key, value in output.items():
if isinstance(value, float):
msg += f'{key}: {value:.3f}%. '
else:
msg += f'{key}: {value}. '
if key != 'file':
metrics_results[key].append(value)
print(msg)
output_results = OrderedDict()
print('===')
print(f'Summary of directory: {directory}')
for key, values in metrics_results.items():
avg = np.mean(values)
max_value = np.max(values)
std = compute_ci95(values) if args.ci95 else np.std(values)
print(f'* {key}: {max_value:.3f}%; {avg:.3f}% +- {std:.3f}%')
output_results[key] = avg
print('===')
return output_results
def main(args, end_signal):
metric1 = {
'name': 'accuracy',
'regex': re.compile(r'\* accuracy: ([\.\deE+-]+)%')
}
metric2 = {
'name': 'error',
'regex': re.compile(r'\* error: ([\.\deE+-]+)%')
}
if args.few_shot:
if args.multi_exp:
final_results = defaultdict(list)
for directory in listdir_nohidden(args.directory, sort=True):
directory = osp.join(args.directory, directory)
results = parse_function_fewshot(
metric1,
metric2,
directory=directory,
args=args,
end_signal=end_signal
)
for key, value in results.items():
final_results[key].append(value)
else:
parse_function_fewshot(
metric1,
metric2,
directory=args.directory,
args=args,
end_signal=end_signal
)
else:
if args.multi_exp:
final_results = defaultdict(list)
for directory in listdir_nohidden(args.directory, sort=True):
directory = osp.join(args.directory, directory)
results = parse_function(
metric1,
metric2,
directory=directory,
args=args,
end_signal=end_signal
)
for key, value in results.items():
final_results[key].append(value)
else:
parse_function(
metric1,
metric2,
directory=args.directory,
args=args,
end_signal=end_signal
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('directory', type=str, help='path to directory')
parser.add_argument(
'--ci95',
action='store_true',
help=r'compute 95\% confidence interval'
)
parser.add_argument(
'--test-log', action='store_true', help='parse test-only logs'
)
parser.add_argument(
'--multi-exp', action='store_true', help='parse multiple experiments'
)
parser.add_argument(
'--few-shot', action='store_true', help='parse multiple experiments'
)
args = parser.parse_args()
end_signal = 'Finished training'
if args.test_log:
end_signal = '=> result'
main(args, end_signal)