forked from rdpeng/ProgrammingAssignment2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcachematrix.R
64 lines (58 loc) · 1.72 KB
/
cachematrix.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
## The pair of functions will cache the inverse of a matrix.
## This script assumes that the matrix supplied is always
## invertible
## The following function creates a special "matrix" object that
## can cache its inverse. It does a list of things:
## 1. set the value of the matrix
## 2. get the value of the matrix
## 3. set the value of inverse of the matrix
## 4. get the value of inverse of the matrix
makeCacheMatrix <- function(x = matrix()) {
m <- NULL
set <- function(y) {
x <<- y
m <<- NULL
}
get <- function() x
setinverse <- function(inverse) m <<- inverse
getinverse <- function() m
list(set = set, get = get,
setinverse = setinverse,
getinverse = getinverse)
}
## The following function computes the inverse of the special
## "matrix" returned by makeCacheMatrix above. If the inverse
## has already been calculated (and the matrix has not changed),
## then the cachesolve should retrieve the inverse from the cache.
## Computing the inverse of a square matrix can be done with the
## solve function in R. For example, if X is a square invertible
## matrix, then solve(X) returns its inverse.
cacheSolve <- function(x, ...) {
## Return a matrix that is the inverse of 'x'
m <- x$getinverse()
if(!is.null(m)) {
message("getting cached data")
return(m)
}
data <- x$get()
m <- solve(data, ...)
x$setinverse(m)
m
}
## Sample runs:
## > mat <- matrix(data = c(4,2,7,6), nrow = 2, ncol = 2)
## > mat
## [,1] [,2]
## [1,] 4 7
## [2,] 2 6
## > mat2 <- makeCacheMatrix(mat)
## > cacheSolve(mat2)
## [,1] [,2]
## [1,] 0.6 -0.7
## [2,] -0.2 0.4
## > cacheSolve(mat2)
## getting cached data
## [,1] [,2]
## [1,] 0.6 -0.7
## [2,] -0.2 0.4
## >