forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
analysis.py
147 lines (129 loc) · 5.07 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import numpy as np
import argparse
import paddle
from tqdm import tqdm
from post_process import YOLOPostProcess, coco_metric
from dataset import COCOValDataset, COCOTrainDataset
from paddleslim.common import load_config, load_onnx_model
from paddleslim.quant.analysis import Analysis
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--config_path',
type=str,
default=None,
help="path of analysis config.",
required=True)
parser.add_argument(
'--devices',
type=str,
default='gpu',
help="which device used to compress.")
parser.add_argument(
'--resume',
type=bool,
default=False,
help=
"When break off while ananlyzing, could resume analysis program and load already analyzed information."
)
return parser
def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
bboxes_list, bbox_nums_list, image_id_list = [], [], []
with tqdm(
total=len(val_loader),
bar_format='Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
for data in val_loader:
data_all = {k: np.array(v) for k, v in data.items()}
outs = exe.run(
compiled_test_program,
feed={test_feed_names[0]: data_all['image']},
fetch_list=test_fetch_list,
return_numpy=False)
res = {}
postprocess = YOLOPostProcess(
score_threshold=0.001, nms_threshold=0.65, multi_label=True)
res = postprocess(np.array(outs[0]), data_all['scale_factor'])
bboxes_list.append(res['bbox'])
bbox_nums_list.append(res['bbox_num'])
image_id_list.append(np.array(data_all['im_id']))
t.update()
map_res = coco_metric(anno_file, bboxes_list, bbox_nums_list, image_id_list)
return map_res[0]
def main():
global config
config = load_config(FLAGS.config_path)
ptq_config = config['PTQ']
input_name = 'x2paddle_image_arrays' if config[
'arch'] == 'YOLOv6' else 'x2paddle_images'
# val dataset is sufficient for PTQ
dataset = COCOTrainDataset(
dataset_dir=config['dataset_dir'],
image_dir=config['val_image_dir'],
anno_path=config['val_anno_path'],
input_name=input_name)
data_loader = paddle.io.DataLoader(
dataset, batch_size=1, shuffle=True, drop_last=True, num_workers=0)
global val_loader
# fast_val_anno_path, such as annotation path of several pictures can accelerate analysis
dataset = COCOValDataset(
dataset_dir=config['dataset_dir'],
image_dir=config['val_image_dir'],
anno_path=config['fast_val_anno_path'] if
config['fast_val_anno_path'] is not None else config['val_anno_path'])
global anno_file
anno_file = dataset.ann_file
val_loader = paddle.io.DataLoader(
dataset, batch_size=1, shuffle=False, drop_last=False, num_workers=0)
load_onnx_model(config["model_dir"])
inference_model_path = config["model_dir"].rstrip().rstrip(
'.onnx') + '_infer'
analyzer = Analysis(
float_model_dir=inference_model_path,
model_filename='model.pdmodel',
params_filename='model.pdiparams',
eval_function=eval_function,
data_loader=data_loader,
save_dir=config['save_dir'],
resume=FLAGS.resume,
quant_config=ptq_config)
analyzer.statistical_analyse()
analyzer.metric_error_analyse()
if config['get_target_quant_model']:
if config['fast_val_anno_path'] is not None:
# change fast_val_loader to full val_loader
dataset = COCOValDataset(
dataset_dir=config['dataset_dir'],
image_dir=config['val_image_dir'],
anno_path=config['val_anno_path'])
anno_file = dataset.ann_file
val_loader = paddle.io.DataLoader(
dataset,
batch_size=1,
shuffle=False,
drop_last=False,
num_workers=0)
# get the quantized model that satisfies target metric you set
analyzer.get_target_quant_model(config['target_metric'])
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
paddle.set_device(FLAGS.devices)
main()