-
Notifications
You must be signed in to change notification settings - Fork 2
/
unet_model.py
43 lines (33 loc) · 1.19 KB
/
unet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch.nn.functional as F
import torch
import torch.nn as nn
from unet_parts import DoubleConv, Down, Up, OutConv
class UNet(nn.Module):
def __init__(self, n_channels, bilinear=True):
super(UNet, self).__init__()
self.n_channels = n_channels
self.bilinear = bilinear
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
factor = 2 if bilinear else 1
self.down4 = Down(512, 1024 // factor)
self.up1 = Up(1024, 512 // factor, bilinear)
self.up2 = Up(512, 256 // factor, bilinear)
self.up3 = Up(256, 128 // factor, bilinear)
self.up4 = Up(128, 64, bilinear)
self.pre = nn.Conv2d(64, 3, 3, 1, 1)
self.re = nn.Sigmoid()
def forward(self, xs):
x1 = self.inc(xs)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
x = self.re(self.pre(x))
return x