Skip to content

This project goal is to demonstrate how to use LSTM networks and apply in some real data.

Notifications You must be signed in to change notification settings

0x10C/LSTM-Stock-Prices

 
 

Repository files navigation

Predicting stock prices with LSTM network

This project goal is to demonstrate how to use LSTM networks and apply in some real data.

Getting Started

In this repository, you will find the following notebook:

  • Moving Average: First look at the data, a SMA and EMA model
  • Sanity Check: A test with LSTM and the model used to make sure the model works
  • LSTM input and output: An explanation on how I manipulated the data to use as input/output for the model
  • LSTM Single Company: A LSTM model used to predict the closing price of a single company. Note that the notebooks ‘Single Company B’, ‘Single Company C’ and ‘Single Company D’ are extremely similar.
  • LSTM multi-companies prediction: A LSTM model used to predict the closing price of all four companies (A, B, C and D).

Prerequisites

The code was written in Python, and uses:

  • Pandas and Numpy (for data manipulation)
  • Matplotlib (for data visualisation)
  • Keras (for building and training the model)
  • sklearn (for data scaling)

Results

A LSTM network is not able to predict the closing price behaviour by only looking at its historical data.

About

This project goal is to demonstrate how to use LSTM networks and apply in some real data.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%