This is a PyTorch implementation of our NeurIPS 2020 paper, MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation.
Project Webpage: https://shivanshpatel35.github.io/multi-ON/
This code is tested on python 3.6.10, pytorch v1.4.0 and CUDA V9.1.85.
Install pytorch from https://pytorch.org/ according to your machine configuration.
This code uses latest versions of habitat-sim and habitat-lab. Install them by following instructions at the respective web-sites.
conda install habitat-sim headless -c conda-forge -c aihabitat
conda install habitat-sim -c conda-forge -c aihabitat
git clone --branch stable https://github.com/facebookresearch/habitat-lab.git
cd habitat-lab
pip install -e .
We know that roadblocks can come up while installing Habitat, we are here to help! For installation issues in habitat, feel free to raise an issue in this repository, or in the corresponding habitat repository.
Clone the repository and install the requirements:
git clone https://github.com/saimwani/multiON
cd multiON
pip install -r requirements.txt
To evaluate pre-trained models and train new models, you will need to download the MultiON dataset, including objects inserted into the scenes, and model checkpoints. Running download_multion_data.sh
from the root directory (multiON/
) will download the data and extract it to appropriate directories. Note that you are still required to download Matterport3D scenes after you run the script (see section on Download Matterport3D scenes below). Running the script will download the OracleEgoMap (oracle-ego
) pre-trained model by default. If you'd like to evaluate other pre-trained models, see this.
bash download_multion_data.sh
You do not need to complete this step if you have successfully run the download_multion_data.sh
script above.
Run the following to download multiON dataset and cached oracle occupancy maps:
mkdir data
cd data
mkdir datasets
cd datasets
wget -O multinav.zip "http://aspis.cmpt.sfu.ca/projects/multion/multinav.zip"
unzip multinav.zip && rm multinav.zip
cd ../
wget -O multiON_objects.zip "http://aspis.cmpt.sfu.ca/projects/multion/multiON_objects.zip"
unzip multiON_objects.zip && rm multiON_objects.zip
wget -O default.phys_scene_config.json "http://aspis.cmpt.sfu.ca/projects/multion/default.phys_scene_config.json"
cd ../
mkdir oracle_maps
cd oracle_maps
wget -O map300.pickle "http://aspis.cmpt.sfu.ca/projects/multion/map300.pickle"
cd ../
The Matterport scene dataset and multiON dataset should be placed in data
folder under the root directory (multiON/
) in the following format:
multiON/
data/
scene_datasets/
mp3d/
1LXtFkjw3qL/
1LXtFkjw3qL.glb
1LXtFkjw3qL.navmesh
...
datasets/
multinav/
3_ON/
train/
...
val/
val.json.gz
2_ON
...
1_ON
...
Download Matterport3D data for Habitat by following the instructions mentioned here.
You do not need to complete this step if you have successfully run the download_multion_data.sh
script above.
mkdir model_checkpoints
Download a pre-trained agent model as shown below.
Agent | Run |
---|---|
NoMap(RNN) | wget -O model_checkpoints/ckpt.0.pth "http://aspis.cmpt.sfu.ca/projects/multion/model_checkpoints/ckpt.0.pth" |
ProjNeural | wget -O model_checkpoints/ckpt.1.pth "http://aspis.cmpt.sfu.ca/projects/multion/model_checkpoints/ckpt.1.pth" |
ObjRecog | wget -O model_checkpoints/ckpt.2.pth "http://aspis.cmpt.sfu.ca/projects/multion/model_checkpoints/ckpt.2.pth" |
OracleEgoMap | wget -O model_checkpoints/ckpt.3.pth "http://aspis.cmpt.sfu.ca/projects/multion/model_checkpoints/ckpt.3.pth" |
OracleMap | wget -O model_checkpoints/ckpt.4.pth "http://aspis.cmpt.sfu.ca/projects/multion/model_checkpoints/ckpt.4.pth" |
Evaluation will run on the 3_ON
test set by default. To change this, specify the dataset path here.
To evaluate a pretrained OracleEgoMap (oracle-ego
) agent, run this from the root folder (multiON/
):
python habitat_baselines/run.py --exp-config habitat_baselines/config/multinav/ppo_multinav.yaml --agent-type oracle-ego --run-type eval
For other agent types, the --agent-type
argument should be changed according to this table:
Agent | Agent type |
---|---|
NoMap(RNN) | no-map |
OracleMap | oracle |
OracleEgoMap | oracle-ego |
ProjNeuralmap | proj-neural |
ObjRecogMap | obj-recog |
Average evaluation metrics are printed on the console when evaluation ends. Detailed metrics are placed in eval/metrics
directory.
For training an OracleEgoMap (oracle-ego
) agent, run this from the root directory:
python habitat_baselines/run.py --exp-config habitat_baselines/config/multinav/ppo_multinav.yaml --agent-type oracle-ego --run-type train
For other agent types, the --agent-type
argument would change accordingly.
Saim Wani*, Shivansh Patel*, Unnat Jain*, Angel X. Chang, Manolis Savva, 2020. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation in Neural Information Processing Systems (NeurIPS). PDF
@inproceedings{wani2020multion,
title={Multi-ON: Benchmarking Semantic Map Memory using Multi-Object Navigation},
author={Saim Wani and Shivansh Patel and Unnat Jain and Angel X. Chang and Manolis Savva},
booktitle={Neural Information Processing Systems (NeurIPS)},
year={2020},
}
This repository is built upon Habitat Lab.