- Update config.yaml
- Update secrets.yaml [Optional]
- Update params.yaml
- Update the entity
- Update the configuration manager in src config.
- Update the components
- Update the pipeline
- Test run pipeline stage
- run tox for testing your package
- Update the dvc.yaml
- run "dvc repro" for running all the stages in pipeline
OUTER STRUCTURE
dvc.yaml is used for orchestration i.e. to connect several pipelines. It can act as a substitute for main.py used in ML project.
params.yaml keeps all the parameters related to the project like batch size, epochs etc.
config.yaml keeps the project structure
STEP 1: Set the env variable | Get it from dagshub -> remote tab -> mlflow tab
MLFLOW_TRACKING_URI=https://dagshub.com/AAKAAASSHHH24/Deep_CNN_classifier.mlflow
MLFLOW_TRACKING_USERNAME=AAKAAASSHHH24
MLFLOW_TRACKING_PASSWORD=eace9117203f613afad0874c7cf8db27d285d1b3
python script.py
STEP 2: install mlflow
STEP 3: Set remote URI
STEP 4: Use context manager of mlflow to start run and then log metrics, params and model
DOCKER RUN COMMAND: docker build -t prediction .