-
Notifications
You must be signed in to change notification settings - Fork 268
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ADD: Adding cloud mask example. (#1632)
* ADD: Adding cloud mask example. * MNT: Wrong field.
- Loading branch information
Showing
1 changed file
with
66 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
""" | ||
===================================== | ||
Calculating and Plotting a Cloud Mask | ||
===================================== | ||
This example shows how to correct and plot reflectivity from an ARM | ||
KAZR using a noise floor cloud mask. | ||
""" | ||
print(__doc__) | ||
|
||
# Author: Adam Theisen and Zach Sherman | ||
# License: BSD 3 clause | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from open_radar_data import DATASETS | ||
|
||
import pyart | ||
|
||
############################ | ||
# **Read and plot raw data** | ||
# | ||
# First let's read and plot our dataset without any mask. | ||
|
||
# Fetch and read in the ARM KAZR file. | ||
filename = DATASETS.fetch("sgpkazrgeC1.a1.20190529.000002.cdf") | ||
radar = pyart.aux_io.read_kazr(filename) | ||
|
||
# Let's now take a look at reflectivity data prior to any corrections. | ||
display = pyart.graph.RadarDisplay(radar) | ||
display.plot("reflectivity_copol") | ||
display.set_limits(xlim=(0, 55)) | ||
plt.show() | ||
|
||
################################################# | ||
# **Calculate cloud mask and plot corrected data** | ||
# | ||
# Now lets apply a mask by using the calc_cloud_mask function | ||
# that will use a noise floor calculation from range and more | ||
# to calculate the mask. | ||
|
||
# First lets correct the data by calculating the mask. | ||
cloud_mask_radar = pyart.correct.calc_cloud_mask(radar, "reflectivity_copol", "range") | ||
|
||
# In this new radar object we should now have a new cloud mask field. | ||
print(cloud_mask_radar.fields["cloud_mask_2"]) | ||
|
||
# Next we'll create a copy of the reflectivity field so we are not | ||
# overwriting the original data. | ||
cloud_mask_radar.add_field_like( | ||
"reflectivity_copol", | ||
"reflectivity_cloud_mask", | ||
cloud_mask_radar.fields["reflectivity_copol"]["data"].copy(), | ||
) | ||
|
||
# Now let's apply the mask to the copied reflectivity data. | ||
cloud_mask_radar.fields["reflectivity_cloud_mask"]["data"][ | ||
cloud_mask_radar.fields["cloud_mask_2"]["data"] == 0 | ||
] = np.nan | ||
|
||
# And now we can plot the masked reflectivity field. | ||
display = pyart.graph.RadarDisplay(cloud_mask_radar) | ||
display.plot("reflectivity_copol") | ||
display.set_limits(xlim=(0, 55)) | ||
plt.show() |