Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ADD: Adding cloud mask code. #1628

Merged
merged 3 commits into from
Aug 29, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion pyart/correct/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,12 @@
from .attenuation import calculate_attenuation # noqa
from .attenuation import calculate_attenuation_philinear # noqa
from .attenuation import calculate_attenuation_zphi # noqa
from .bias_and_noise import correct_bias, correct_noise_rhohv # noqa
from .bias_and_noise import calc_cloud_mask, calc_noise_floor, correct_bias # noqa
from .bias_and_noise import (
correct_noise_rhohv, # noqa
cloud_threshold, # noqa
range_correction, # noqa
) # noqa
from .dealias import dealias_fourdd # noqa
from .despeckle import despeckle_field, find_objects # noqa
from .phase_proc import phase_proc_lp, phase_proc_lp_gf # noqa
Expand Down
281 changes: 281 additions & 0 deletions pyart/correct/bias_and_noise.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,15 @@
Corrects polarimetric variables for noise

"""
import warnings

import dask
import numpy as np
import pint
from scipy import signal

from ..config import get_field_name, get_metadata
from ..core.radar import Radar


def correct_noise_rhohv(
Expand Down Expand Up @@ -137,3 +142,279 @@ def correct_bias(radar, bias=0.0, field_name=None):
corr_field["data"] = corr_field_data

return corr_field


def calc_cloud_mask(
radar,
field,
height=None,
noise_threshold=-45.0,
threshold_offset=5.0,
counts_threshold=12,
):
"""
Main function for calculating the cloud mask.
zssherman marked this conversation as resolved.
Show resolved Hide resolved

Parameters
----------
radar : Radar
Py-ART Radar object.
field : string
Reflectivity field name to calculate.
height : string
Height name to use for calculations.
noise_threshold : float
Threshold value used for noise detection. Greater than this value.
threshold_offset : float
Threshold offset value used for noise detection
counts_threshold : int
Threshold of counts used to determine mask. Greater than or equal to this value.

Returns
-------
radar : Radar
Returns an updated Radar object with cloud mask fields.

References
----------
Kollias, P., I. Jo, P. Borque, A. Tatarevic, K. Lamer, N. Bharadwaj, K. Widener,
K. Johnson, and E.E. Clothiaux, 2014: Scanning ARM Cloud Radars. Part II: Data
Quality Control and Processing. J. Atmos. Oceanic Technol., 31, 583–598,
https://doi.org/10.1175/JTECH-D-13-00045.1

"""

if not isinstance(radar, Radar):
raise ValueError("Please use a valid Py-ART Radar object")

if not isinstance(field, str):
raise ValueError("Please specify a valid field name.")

noise = calc_noise_floor(radar, field, height=height)

noise_thresh = (
np.nanmin(
np.vstack(
[
noise,
np.full(np.shape(radar.fields[field]["data"])[0], noise_threshold),
]
),
axis=0,
)
+ threshold_offset
)

data = range_correction(radar, field, height=height)

task = []
for i in range(np.shape(data)[0]):
task.append(dask.delayed(_first_mask)(data[i, :], noise_thresh[i]))

result = dask.compute(task)
mask1 = np.array(result[0])

counts = signal.convolve2d(mask1, np.ones((4, 4), dtype=int), mode="same")
mask2 = np.zeros_like(data, dtype=np.int16)
mask2[counts >= counts_threshold] = 1

cloud_mask_1 = {}
cloud_mask_1["long_name"] = "Cloud mask 1 (linear profile)"
cloud_mask_1["units"] = "1"
cloud_mask_1["comment"] = (
"The mask is calculated with a " "linear mask along each time profile."
)
cloud_mask_1["flag_values"] = [0, 1]
cloud_mask_1["flag_meanings"] = ["no_cloud", "cloud"]
cloud_mask_1["data"] = mask1

cloud_mask_2 = {}
cloud_mask_2["long_name"] = "Cloud mask 2 (2D box)"
cloud_mask_2["units"] = "1"
cloud_mask_2["comment"] = "The mask uses a 2D box to " "filter out noise."
cloud_mask_2["flag_values"] = [0, 1]
cloud_mask_2["flag_meanings"] = ["no_cloud", "cloud"]
cloud_mask_2["data"] = mask2

radar.add_field("cloud_mask_1", cloud_mask_1, replace_existing=True)
radar.add_field("cloud_mask_2", cloud_mask_2, replace_existing=True)

return radar


def calc_noise_floor(radar, field, height):
"""
Calculation for getting the noise floor

Parameters
----------
radar : Radar
Py-ART Radar object containing data.
field : string
Reflectivity field name to correct.
height : string
Height name to use in correction.

Returns
-------
noise : array
Returns the noise floor value for each time sample.

References
----------
Kollias, P., I. Jo, P. Borque, A. Tatarevic, K. Lamer, N. Bharadwaj, K. Widener,
K. Johnson, and E.E. Clothiaux, 2014: Scanning ARM Cloud Radars. Part II: Data
Quality Control and Processing. J. Atmos. Oceanic Technol., 31, 583–598,
https://doi.org/10.1175/JTECH-D-13-00045.1

"""

if not isinstance(radar, Radar):
raise ValueError("Please use a valid Py-ART Radar object.")

# Range correct data and return the array from the Radar object
data = range_correction(radar, field, height=height)

# Pass each timestep into task list to calculate cloud threshhold
# with a delayed dask process
task = [dask.delayed(cloud_threshold)(row) for row in data]

# Perform dask computation
noise = dask.compute(*task)

# Convert returned dask tuple into numpy array
noise = np.array(noise, dtype=float)

return noise


def cloud_threshold(data, n_avg=1.0, nffts=None):
"""
Calculates the noise floor from a cloud threshold.

Parameters
----------
data : array
Numpy array
n_avg : float
Number of points to average over
nffts : int
Number of heights to iterate over. If None will use the size of data.

Returns
-------
result : numpy scalar float
Returns the noise floor value for each time sample.

References
----------
Kollias, P., I. Jo, P. Borque, A. Tatarevic, K. Lamer, N. Bharadwaj, K. Widener,
K. Johnson, and E.E. Clothiaux, 2014: Scanning ARM Cloud Radars. Part II: Data
Quality Control and Processing. J. Atmos. Oceanic Technol., 31, 583–598,
https://doi.org/10.1175/JTECH-D-13-00045.1

"""

if nffts is None:
nffts = data.size

data = 10.0 ** (data / 10.0)
data = np.sort(data)

nthld = 10.0**-10.0
dsum = 0.0
sumSq = 0.0
n = 0.0
numNs = []
sqrt_n_avg = np.sqrt(n_avg)
for i in range(nffts):
if data[i] > nthld:
dsum += data[i]
sumSq += data[i] ** 2.0
n += 1.0
a3 = dsum * dsum
a1 = sqrt_n_avg * (n * sumSq - a3)
if n > nffts / 4.0:
if a1 <= a3:
sumNs = dsum
numNs = [n]
else:
sumNs = dsum
numNs = [n]

if len(numNs) > 0:
n_mean = sumNs / numNs[0]
else:
n_mean = np.nan

if n_mean == 0.0:
result = np.nan
else:
result = 10.0 * np.log10(n_mean)

return result


def range_correction(radar, field, height):
"""
Corrects reflectivity for range to help get the
correct noise floor values

Parameters
----------
radar : Radar
Py-ART Radar object containing data.
field : string
Reflectivity field name to correct.
height : string
Height name to use in correction.

Returns
-------
data : array
Returns a range corrected array matching reflectivity field.

"""

if not isinstance(radar, Radar):
raise ValueError("Please use a valid Py-ART Radar object.")

try:
height_units = getattr(radar, height)["units"]
except KeyError:
warnings.warn(
f"Height '{height} does not have units attribute. "
"Assuming units are meters."
)
height_units = "m"

height = getattr(radar, height)["data"]
desired_unit = "m"
if height_units is not desired_unit:
if isinstance(height, np.ma.MaskedArray):
height = height.filled(np.nan)
unit_registry = pint.UnitRegistry()
height = height * unit_registry.parse_expression(height_units)
height = height.to(desired_unit)
height = height.magnitude

data = radar.fields[field]["data"]

if isinstance(data, np.ma.MaskedArray) and not data.mask:
data = data.data
elif isinstance(data, np.ma.MaskedArray) and data.mask:
data = data.filled(np.nan)

with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", category=RuntimeWarning, message=".*divide by zero encountered.*"
)
data = data - 20.0 * np.log10(height / 1000.0)

return data


def _first_mask(data, noise_threshold):
mask = np.zeros_like(data, dtype=np.int16)
mask[data > noise_threshold] = 1
return mask
Loading